 Agten C.A., Buck F.M., Dyer L., Fluck M., Pfirrmann C.W., Rosskopf A.B. (2017) Delayed-Onset Muscle Soreness: Temporal Assessment With Quantitative MRI and Shear-Wave Ultrasound Elastography. American Journal of Roentgenology 208, 402-412. |
 Al-Nakhli H.H., Petrofsky J.S., Laymon M.S., Berk L.S. (2012) The use of thermal infra-red imaging to detect delayed onset muscle soreness. Journal of Visual Experiments 59, 3551. |
 Allen D.G., Lamb G.D., Westerblad H. (2008) Skeletal muscle fatigue: cellular mechanisms. Physiology Reviews 88, 287-332. |
 Bach A.J., Stewart I.B., Disher A.E., Costello J.T. (2015) A comparison between conductive and infrared devices for measuring mean skin temperature at rest, during exercise in the heat, and recovery. PLoS One 10, e0117907. |
 Brown S.J., Child R.B., Day S.H., Donnelly A.E. (1997) Indices of skeletal muscle damage and connective tissue breakdown following eccentric muscle contractions. European Journal of Applied Physiology 75, 369-374. |
 Cohen, J. (1988) Statistical power analysis for the behavioral sciences.
Routledge. |
 Costello J., Stewart I.B., Selfe J., Karki A., Donnelly A.E. (2013) Use of thermal imaging in sports medicine research: a short report. International SportMed Journal 14, 94-98. |
 Foster C., Florhaug J.A., Franklin J., Gottschall L., Hrovatin L.A., Parker S., Doleshal P., Dodge C. (2001) A new approach to monitoring exercise training. Journal of Strength and Conditioning Research 15, 109-115. |
 Gonzalez-Alonso J., Quistorff B., Krustrup P., Bangsbo J., Saltin B. (2000) Heat production in human skeletal muscle at the onset of intense dynamic exercise. Journal of Physiology 524, 603-615. |
 Hadzic V., Sirok B., Malnersic A., Coh M. (2019) Can infrared thermography be used to monitor fatigue during exercise? A case study. Journal of Sport and Health Science 8, 89-92. |
 Jarosz A.F., Wiley J. (2014) What are the odds? A practical guide to computing and reporting Bayes factors. The Journal of Problem Solving 7, 2-9. |
 Lau W.Y., Muthalib M., Nosaka K. (2013) Visual analof gcale and pressure pain threshold for delayed onset of muscle soreness assessment. Journal of Musculoskeletal Pain 21, 320-326. |
 Liu F., Kong Y. (2015) zoib: an R package for bayesian inference for beta regression and zero/one inflated beta regression. The R Journal 7, 34-51. |
 Lunn D., Spiegelhalter D., Thomas A., Best N. (2009) The BUGS project: Evolution, critique and future directions. Statistics in Medicine 28, 3049-3067. |
 MacIntyre D.L., Reid W.D., McKenzie D.C. (1995) Delayed muscle soreness. The inflammatory response to muscle injury and its clinical implications. Sports Medicine 20, 24-40. |
 Mengersen K.L., Drovandi C.C., Robert C.P., Pyne D.B., Gore C.J. (2016) Bayesian Estimation of Small Effects in Exercise and Sports Science. PLoS One 11, e0147311. |
 Merla A., Mattei P.A., Di Donato L., Romani G.L. (2010) Thermal imaging of cutaneous temperature modifications in runners during graded exercise. Annals of Biomedical Engineering 38, 158-163. |
 Minett G.M., Duffield R. (2014) Is recovery driven by central or peripheral factors? A role for the brain in recovery following intermittent-sprint exercise. Frontiers in Physiology 5, 24. |
 Moghadam, P. (2015) 3D medical thermography device. In: SPIE Sensing
Technology + Applications, Vol. 9485, SPIE, pp. 8. |
 Moreira D.G., Costello J.T., Brito C.J., Adamczyk J.G., Ammer K., Bach A.J.E., Costa C.M.A., Eglin C., Fernandes A.A., Fernandez-Cuevas I., Ferreira J.J.A., Formenti D., Fournet D., Havenith G., Howell K., Jung A., Kenny G.P., Kolosovas-Machuca E.S., Maley M.J., Merla A., Pascoe D.D., Priego Quesada J.I., Schwartz R.G., Seixas A.R.D., Selfe J., Vainer B.G., Sillero-Quintana M. (2017) Thermographic imaging in sports and exercise medicine: A Delphi study and consensus statement on the measurement of human skin temperature. Journal of Thermal Biology 69, 155-162. |
 Morey, R.D. and Rouder, J.N. (2018) BayesFactor: Computation of Bayes Factors for Common Designs, CRAN R package version 0.9.12-4.2. |
 Paddon-Jones D.J., Quigley B.M. (1997) Effect of cryotherapy on muscle soreness and strength following eccentric exercise. International Journal of Sports Medicine 18, 588-593. |
 Plummer, M., Best, N. and Cowles, K. (2006) CODA: Convergence Diagnosis and Output Analysis for MCMC. R News 6. |
 Pointon M., Duffield R., Cannon J., Marino F.E. (2011) Cold application for neuromuscular recovery following intense lower-body exercise. European Journal of Applied Physiology 111, 2977-2986. |
 Pournot H., Bieuzen F., Louis J., Mounier R., Fillard J.R., Barbiche E., Hausswirth C. (2011) Time-course of changes in inflammatory response after whole-body cryotherapy multi exposures following severe exercise. PLoS One 6, e22748. |
 Ring, E.F. and Ammer, K. (2012) Infrared thermal imaging in medicine.
Physiological Measurement 33, R33-46. |
 Sayers S.P., Peters B.T., Knight C.A., Urso M.L., Parkington J., Clarkson P.M. (2003) Short-term immobilization after eccentric exercise. Part I: contractile properties. Medicine and Science in Sports and Exercise 35, 753-761. |
 Shield A., Zhou S. (2004) Assessing voluntary muscle activation with the twitch interpolation technique. Sports Med 34, 253-267. |
 Silva Y.A., Santos B.H., Andrade P.R., Santos H.H., Moreira D.G., Sillero-Quintana M., Ferreira J.J.A. (2017) Skin temperature changes after exercise and cold water immersion. Sport Science and Health 13, 195-202. |
 Togawa T., Saito H. (1994) Non-contact imaging of thermal properties of the skin. Physiol Meas 15, 291-298. |
 Vidas S., Moghadam P., Sridharan S. (2015) Real-Time Mobile 3D Temperature Mapping. IEEE Sensors Journal 15, 1145-1152. |
 Warren G.L., Lowe D.A., Armstrong R.B. (1999) Measurement tools used in the study of eccentric contraction-induced injury. Sports Medicine 27, 43-59. |
 Yoshizawa M., Shimizu-Okuyama S., Kagaya A. (2008) Transient increase in femoral arterial blood flow to the contralateral non-exercising limb during one-legged exercise. European Journal of Applied Physiology 103, 509-514. |
 Moghadam, P. and Commonwealth Scientific and Industrial Research
Organization (CSIRO) (2018) 3D imaging method and system. U.S. Patent 9,986,176. |
|