The purpose of this study was to compare joint, racket, and ball kinematics between the shakehand and penhold grips in table tennis forehand and backhand strokes when returning topspin and backspin balls in advanced male players. The observed peak racket and ball velocities in forehand and backhand strokes with the shakehand grip were similar to previous findings in advanced male athletes (Iino and Kojima, 2009, Iino et al., 2008), suggesting comparable performance levels and techniques. The findings do not support the hypothesis that the shakehand grip would result in increased peak racket and ball velocities in forehand strokes when returning topspin and backspin balls compared to the penhold grip, although different joint kinematics have been observed. Iino and Kojima (2009) showed that shoulder internal rotation and flexion angular velocities made the most contributions, while forearm and wrist angular velocities had small contributions to racket velocities at the time of ball impact in forehand strokes. Consistently, shoulder internal rotation and flexion angular velocities represented the two greatest angular velocities in the current study, supporting the major role of the shoulder in producing racket velocities in forehand strokes. As shoulder, angular velocities were similar between the two grips, their effects on racket and ball velocities were likely similar and contributed to the non-significant peak racket and ball velocities between the two grips. However, since the racket was in a more externally rotated position, the penhold grip compensated with decreased shoulder external rotation throughout the stroke to place the racket in the desired plane for ball impact. Despite different initial and final shoulder external rotation angles, both grips utilized similar shoulder external rotation joint range of motion to produce comparable peak angular velocities. Regarding racket kinematics, the different racket angles between the two grips were inherently associated with the relative position of the racket to the forearm. However, the more externally rotated and flexed racket for the penhold grip allowed greater racket internal rotation and extension velocities for generating racket velocities. On the other hand, a close to neutral racket position for the shakehand grip involved racket flexion velocities. In summary, the two grips demonstrated similar peak racket and ball velocities in forehand strokes, but they engaged different shoulder external rotation and utilized different racket movements in relation to the forearm. The findings support the hypothesis that the shakehand grip would result in increased peak racket and ball velocities in backhand strokes when returning topspin and backspin balls compared to the penhold grip. The shakehand grip also demonstrated a shorter time to reach peak racket velocities. Literature has shown that the mechanism to increase racket velocities was different for backhand strokes with the angular velocities of wrist extension, elbow extension, and shoulder external rotation making the greatest contributions (Iino et al., 2008). Similarly, the greatest angular velocities were found for racket extension, shoulder external rotation, and elbow extension in the current study. The shakehand grip demonstrated increased racket extension angular velocities for the backspin condition and tended to have greater shoulder external rotation angular velocities for the topspin condition, supporting the grip style had a direct effect on the major contributors to racket linear velocities (Iino et al., 2008). The shakehand grip also showed increased angular velocities of trunk right rotation, shoulder adduction, and forearm supination. Both grips started with the racket pointed backward and placed close to the transverse plane. Compared to the penhold grip with the hand holding the racket below, the hand was along with the handle for the shakehand grip. With the same starting racket position, the elevated shakehand grip resulted in increased shoulder abduction and internal rotation and forearm pronation. The increased initial shoulder abduction allowed greater shoulder adducting motion throughout the stroke and likely resulted in the increased shoulder adduction angular velocities for the shakehand-grip. On the other hand, the shoulder abduction slightly increased or remained similar for the penhold grip, suggesting the limited role of shoulder adducting motion in producing linear racket velocities. Also, the shakehand- grip tended to engage greater shoulder internal rotation angles throughout the stroke, which might provide a better range of motion to develop shoulder external rotation angular velocities compared to the penhold-grip. Furthermore, the increased forearm pronation increased the forearm supination range of motion and supination angular velocities when striking topspin balls for the shakehand grip. For racket kinematics, the racket started with flexion and ended with small flexion near the ball impact for the shakehand grip. This close alignment between the longitudinal axes of the racket and the forearm might facilitate the transfer from the angular velocities of trunk right rotation, shoulder adduction and external rotation, and racket extension to racket linear velocities in the forward direction. On the other hand, the transfer of these angular velocities could be less because of the increased flexion between the racket and forearm for the penhold grip. This increased flexion could also increase the demand for controlling the effects of different joint motion on racket orientation and had affected the players to decrease their speeds for better movement control. Overall, the penhold grip resulted in decreased peak racket and ball velocities compared to the shakehand grip. The penhold grip involved different joint angles and range of motion of shoulder abduction, shoulder internal rotation, and forearm pronation, which may have affected the development of the angular velocities of these joints. The penhold grip also involved less aligned longitudinal axes between the racket and forearm, which might have decreased joint angular velocities and the transfer from joint angular velocities to racket linear velocities. The current findings may provide information for practical application. For advanced players who have chosen either the shakehand or penhold grip, they should be aware of the different shoulder joint range of motion and racket motion involved for the forehand strokes and perform designed exercises target specific movements and muscle groups. Players with the penhold grip need to understand the potential disadvantages associated with the decreased shoulder, elbow, and forearm motion and the less aligned longitudinal axes between the racket and forearm in backhand strokes. Being able to develop shoulder, elbow, forearm, and racket angular velocities with a smaller range of motion is crucial for these players. For beginners, they may consider the increased racket velocities in backhand strokes for the shakehand grip, as an advantage for grip selection. This factor could also help them understand the dominance of the shakehand grip over the penhold grip in elite athletes. In addition, the shakehand had a more neutral alignment between the racket and forearm, and mainly involved racket flexion and extension, which may facilitate learning in the early stage. The current study had several limitations. First, the time of ball impact was not measured. Instead, the peak racket velocity was used as a critical event to extract kinematic variables. Although previous studies have supported that the peak racket velocity typically occurs at ball impact (Bankosz and Winiarski, 2018a), this estimation might have introduced errors. In addition, the peak angular velocities of different joints could occur before the peak resultant velocity of the racket, but the angular velocities at this critical event were expected to have a more direct effect on the peak resultant velocity of the racket. Second, only one marker was placed on the hand, so the three-dimensional angles between the hand and the racket and between the hand and the forearm could not be quantified. The separation of the wrist motion from the racket motion should be considered in follow-up studies. Third, the direction and speed of the ball’s rotation were not measured. The penhold involved greater racket motion in non-sagittal planes, which could have a greater influence on ball rotation. Fourth, strokes were performed with a consistent serve and a pre-determined trajectory of return with an effort to achieve maximal ball velocities. Other factors, such as directions and depths of return and movement deception, could affect the outcome of a rally in real competitions. It is possible that the more flexed alignment between the racket and forearm for the penhold grip might help prevent opponents from detecting planned movements. Fifth, the participants were limited to male players. Future studies should examine the two grips in female players to identify potential sex differences. Last, the current study was limited to joint, racket, and ball kinematics. Previous studies have applied kinetic analyses (Iino, 2018; Iino and Kojima, 2011; 2016), which should be considered in future studies. |