Adam J., Zatoń M., Wierzbicka-Damska I. (2015) Physiological adaptation to high intensity interval training with added volume of respiratory dead space in club swimmers. Polish Journal of Sports Medicine 314, 223-237. |
Aellen R., Hollmann W., Boutellier U. (1993) Effects of aerobic and anaerobic training on plasma lipoproteins. International Journal of Sports Medicine 14, 396-400. |
Alkahtani S (2014) Comparing fat oxidation in an exercise test with moderate-intensity interval training. Journal of Sports Science and Medicine 13, 51-58. |
Atkinson G., Reilly T. (1996) Circadian variation in sports performance. Sports Medicine 21, 292-312. |
Cathcart A.J., Herrold N., Turner A.P., Wilson J., Ward S.A. (2005) Absence of long-term modulation of ventilation by dead-space loading during moderate exercise in humans. European Journal of Applied Physiology 93, 411-420. |
Demarie S., Sardella F., Billat V., Magini W., Faina M. (2001) The VO2 slow component in swimming. European Journal of Applied Physiology 84, 95-99. |
Faul F., Erdfelder E., Lang A.-G., Buchner A. (2007) G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods 39, 175-191. |
Fernandes R. J., Vilas-Boas J. P. (2012) Time to exhaustion at the VO2max velocity in swimming: A review. Journal of Human Kinetics 32, 121-34. |
Fukuda D.H., Wray M.E., Kendall K.L., Smith-Ryan A.E., Stout J.R. (2017) Validity of near-infrared interactance (FUTREX 6100/XL) for estimating body fat percentage in elite rowers. Clinical Physiology and Functional Imaging 37, 456-458. |
Graham T.E., Wilson B.A., Sample M., Van Dijk J., Goslin B. (1982) The effects of hypercapnia on the metabolic response to steady-state exercise. Medicine & Science in Sports & Exercise 14, 286-291. |
van Hall G., Sacchetti M., Rådegran G., Saltin B. (2002) Human skeletal muscle fatty acid and glycerol metabolism during rest, exercise and recovery. The Journal of Physiology 15, 1047-58. |
Hebisz P., Hebisz R., Zatoń M. (2013) Changes in breathing pattern and cycling efficiency as a result of training with added respiratory dead space volume. Human Movement 14, 247-253. |
Heinicke K., Heinicke I., Schmidt W., Wolfarth B. (2005) A threeweek traditional altitude training increases hemoglobin mass and red cell volume in elite biathlon athletes. International Journal of Sports Medicine 26, 350-355. |
Hollidge-Horvat M.G., Parolin M.L., Wong D., Jones N.L., Heigenhauser G.J. (1999) Effect of induced metabolic acidosis on human skeletal muscle metabolism during exercise. American Journal of Physiology 277, 647-658. |
Jones N.L. (2008) An obsession with CO2. Applied Physiology, Nutrition, and Metabolism 33, 641-650. |
Jorgić B., Puletić M., Okičić T., Meškovska N. (2011) Importance of maximal oxygen consumption during swimming. Physical Education and Sport 9, 183-191. |
Karaula D., Homolak J., Leko G. (2016) Effects of hypercapnic-hypoxic training on respiratory muscle strength and front crawl stroke performance among elite swimmers. Turkish Journal of Sport and Exercise 18, 17-24. |
Kato T., Tsukanaka A., Harada T., Kosaka M., Matsui N. (2005) Effect of hypercapnia on changes in blood ph, plasma lactate and ammonia due to exercise. European Journal of Applied Physiology 95, 400-408. |
Kelman G.R., Watson A.W.S. (1973) Effect of added dead-space on pulmonary ventilation during sub-maximal, steady-state exercise. Quarterly Journal of Experimental Physiology 58, 305-313. |
Kenney, W.L., Wilmore, J.H. and Costill, D. (2012) Physiology of Sport
and Exercise. 5th edition. Human Kinetics, Champaign, Illinois.
247-282. |
Khayat R.N., Xie A., Patel A.K., Kaminski A., Skatrud J.B. (2003) Cardiorespiratory effects of added dead space in patients with heart failure and central sleep apnea. Chest 123, 1551-60. |
Kikuchi R., Tsuji T., Watanabe O., Yamaguchi K., Furukawa K., Nakamura H., Aoshiba K. (2017) Hypercapnia accelerates adipogenesis: a novel role of high CO2 in exacerbating obesity. American Journal of Respiratory Cell and Molecular Biology 57, 570-580. |
Kimura Y., Yeater R.A., Martin R.B. (1990) Simulated swimming: a useful tool for evaluation the VO2 max of swimmers in the laboratory. British Association of Sport and Medicine 24, 201-206. |
Koppers R.J., Vos P.J., Folgering H.T. (2006) Tube breathing as a new potential method to perform respiratory muscle training: safety in healthy volunteers. Respiratory Medicine 100, 714-720. |
Kraut J.A., Madias N.E. (2014) Lactic acidosis. New England Journal of Medicine 371, 2309-2319. |
Kumar P., Bin-Jaliach I. (2007) Adequate stimuli of the carotid body: More than an oxygen sensor?. Respiratory Physiology and Neurobiology 157, 12-21. |
Lahart I.M., Metsios G.S. (2018) Chronic physiological effects of swim training interventions in non-elite swimmers: A systematic review and meta-analysis. Sports Medicine 48, 337-359. |
Latt E., Jurimae J., Haljaste K., Cicchella A., Purge P., Jurimae T. (2009) Longitudinal development of physical and performance parameters during biological maturation of young male swimmers. Perceptual and Motor Skills 108, 297-307. |
McLellan T.M. (1991) The influence of a respiratory acidosis on the exercise blood lactate response. European Journal of Applied Physiology and Occupational Physiology 63, 6-11. |
Mercier J., Ramonatxo M., Prefaut C. (1992) Breathing pattern and ventilatory response to CO2 during exercise. International Journal of Sports Medicine 13, 1-5. |
Michalik K., Zalewski I., Zatoń M., Danek N., Bugajski A. (2018) High intensity interval training with added dead space and physical performance of amateur triathletes. The Polish Journal of Sports Medicine 4, 247-255. |
Millet P.G., Roels B., Schmitt L., Woorons X., Richaled P. (2010) Combining hypoxic methods for peak performance. Sports Medicine 40, 1-25. |
Østergaard L., Kjaer K., Jensen K., Gladden L.B., Martinussen T., Pedersen P.K. (2012) Increased steady-state VO2 and larger O2 deficit with CO2 inhalation during exercise. Acta Physiologica 204, 371-381. |
Schneider A.G., Eastwood G.M., Bellomo R., Bailey M., Lipcsey M., Pilcher D., Suzuki S. (2013) Arterial carbon dioxide tension and outcome in patients admitted to the intensive care unit after cardiac arrest. Resuscitation 84, 927-934. |
Smołka L., Borkowski J., Zatoń M. (2014) The effect of additional dead space on respiratory exchange ratio and carbon dioxide production due to training. Journal of Sports Science and Medicine 13, 36-43. |
Stallknecth B., Simonsen L., Billpw J., Vinten J., Galbo H. (1995) Effect of training on epinephrine-stimulatedmlipolysis determined by microdialysisnin human adipose tissue. American Journal of Physiology 269, E1059-E1066. |
Thoma, J.R., Nelson, J.K. and Silverman, S.J. (2015) Research Methods
in Physical Activity. 7th edition. Human Kinetics, Champaign,
Illinois. 166-167. |
Toklu A.S., Kayserilioǧlu A., Ünal M., Özer Ş., Aktaş Ş (2003) Ventilatory and metabolic response to rebreathing the expired air in the snorkel. International Journal of Sports Medicine 24, 162-165. |
Zatoń M, Hebisz R., Hebisz P. (2010) The effect of training with additional respiratory dead space on haematological elements of blood. Isokinetics and Exercise Science 18, 137-143. |
Zatoń M., Smołka L. (2011) Circulatory and respiratory response to exercise with added respiratory dead space. Human Movement 12, 88-94. |
Zatoń, M. and Ziebura, Z. (2012) The significance of training with additional respiratory dead space in development of physical capacity
in swimming. In: Science in Swimming. Eds: Zatoń, K., Rejman,
M., Klarowicz, A. 4 edition. Wrocław: AWF Wrocław. 125-148. |
Zoretić D., Grčić-Zubčević N., Zubčić K. (2014) The effects of hypercapnic-hypoxic training program on hemoglobin concentration and maximum oxygen uptake of elite swimmers. Kinesiology: International Journal of fundamental and Applied Kinesiology 46, 40-45. |
Kaminsky, L. A., Arena R. and Myers, J. (2015) Reference Standards for
Cardiorespiratory Fitness Measured With Cardiopulmonary Exercise Testing: Data From the Fitness Registry and the Importance of Exercise National Database. Mayo Clinic Proceedings 90(11), 1515-1523. |
|