The present study revealed that change in the COP position affects the ankle and knee extensor moments during double-leg squatting, while no effect on the hip extensor moment was observed under the COP conditions used in this study. These findings partially support our a priori hypotheses. The AP-COP position was significantly different between the anterior and posterior COP conditions, and the mean positions were within the target range for each condition. Thus, the conditions set in this study were properly performed. However, there was no significant difference in the VGRF, or trunk, hip or knee flexion angle. The ankle dorsiflexion angle was significantly larger under the anterior COP condition, while the mean difference was only 1.6°. Thus, the present findings on the difference in lower-limb joint moment were caused by the change in AP-COP position. The ankle extensor moment was significantly larger under the anterior COP condition than under the posterior COP condition. This finding is supported by a previous study showing that side-to-side differences in the ankle extensor moment were significantly associated with side-to-side differences in the distance between the COP and ankle joint center during double-leg squatting (Flanagan and Salem, 2007). Moreover, an electromyography study showed that the muscle activity of the gastrocnemius lateral head was increased during double-leg squatting with the COP shifted anteriorly as far as possible, which also supports the present finding (Kitamura et al., 2019). It is interesting for the present study that the decrease in the AP-COP position of 9.1% of the foot length led to a decrease in the ankle extensor moment of approximately 30%. The contribution of the ankle extensor moment to the total support moment changed by approximately 6%. These results indicate that the AP-COP position and ankle extensor moment are closely related. The AP-COP position is a good indicator of the ankle extensor moment during squatting. The knee extensor moment was significantly smaller under the anterior COP condition than under the posterior COP condition. Trunk flexion and anterior-posterior knee position (or shank inclination) are well studied as indicators of the knee extensor moment (Biscarini et al., 2011; Fry et al., 2003; Kernozek et al., 2018; Lorenzetti et al., 2012; Straub et al., 2021). The present finding adds the AP-COP position as a new indicator of the knee extensor moment. The decrease in the knee extensor moment under the anterior COP condition compared to the posterior COP condition was approximately 6%, and the ratio of the knee extensor moment to the total support moment decreased by approximately 5%. Although direct comparisons cannot be made because of the different reference conditions of the comparison, the decrease in the present study may be smaller than that in the previous studies showing that restriction of the anterior knee displacement causes an approximately 20% decrease in the knee extensor moment (Fry et al., 2003; Kernozek et al., 2018). On the other hand, a previous study showed that an increase in vastus medialis activity of approximately 60% during double-leg squatting with the AP-COP shifted from approximately 45% to 75% of the foot length (Kitamura et al., 2019). Therefore, a larger change in the AP-COP position than in the present study may alter the knee extensor moment more, but additional research is needed to prove this hypothesis. The effect of the AP-COP position on the hip extensor moment was not apparent in the present study. The contribution of the hip extensor moment was significantly different between the anterior and posterior COP conditions, though the mean difference between the two conditions was approximately 1%. This small difference in the contribution of the hip extensor moment could be attributed to changes in the ankle and knee extensor moments because there was no significant difference in the magnitude of the hip extensor moment between the two conditions. It is thought that the ankle and knee extensor moments are related to the AP-COP position through the changes in the moment arms of the ankle and knee joints (Chan and Sigward, 2020; Flanagan and Salem, 2007). Thus, the difference in the AP-COP position of 9.1% of the foot length between the two conditions had no effect on the hip extensor moment in the present study because the hip joint positions are higher than the knee and ankle joints. Further studies are needed to investigate the effect of larger changes in the AP-COP position on the hip extensor moment than those used in the present study. This study showed that the AP-COP position could coordinate the ankle and knee extensor moments. Trunk flexion and anterior-posterior knee position have been widely used as indicators of the knee extensor moment (Biscarini et al., 2011; Fry et al., 2003; Kernozek et al., 2018; Lorenzetti et al., 2012; Straub et al., 2021). Compared with these variables, the AP-COP position is characterized by usability, as a feedback variable with real-time and continuous numbers determined using a force plate. The participants of the present study were able to control the COP position within the target range. Moreover, after anterior cruciate ligament reconstruction, patients showed a smaller knee-to-ankle extensor moment ratio in the involved limb than in the uninvolved limb during double-leg squatting (Chan and Sigward, 2020). This previous study also reported a more anterior COP position in the involved limb than the uninvolved limb and the association between the interlimb ratio for the knee-to-ankle extensor moment ratio and AP-COP position. On the other hand, the side-to-side difference in the ankle flexion angle was approximately 3° or not found in patients after anterior cruciate ligament reconstruction (Roos et al., 2014; Salem et al., 2003). The trunk flexion angle cannot be used to assess side-to-side differences. Therefore, training with visual feedback on the AP-COP position may be useful to improve the interlimb asymmetry in the knee-to-ankle extensor moment ratio during double-leg squatting in patients after anterior cruciate ligament reconstruction. Although little attention has been given to coordination of the ankle extensor moment during squatting, the ankle extensor moment under the anterior COP condition was comparable to that during the double-leg heel raise (Flanagan et al., 2005). The present study has some limitations that should be acknowledged. First, double-leg squatting was performed without external resistance. The magnitude of the effect of the AP-COP position on lower limb joint moment may be different when squatting with and without an external resistance. Second, it is unclear how much effect there is when the AP-COP position is varied beyond the range used in the present study. Further knowledge should be accumulated on performing squatting exercises while receiving feedback on the AP-COP position. Finally, the present study controlled only the COP position, and no difference in kinematics was observed. Feedback on the trunk flexion and AP knee position are widely used to adjust the knee extensor moment, while the effect of changing the AP-COP position in combination with kinematic coordination is unclear. |