Research article - (2022)21, 91 - 103 DOI: https://doi.org/10.52082/jssm.2022.91 |
Early Superimposed NMES Training is Effective to Improve Strength and Function Following ACL Reconstruction with Hamstring Graft regardless of Tendon Regeneration |
Luciana Labanca1, Jacopo E. Rocchi2, Silvana Giannini2, Emanuele R. Faloni2, Giulio Montanari2, Pier Paolo Mariani1,2, Andrea Macaluso1,2, |
Key words: Resistance training, semitendinosus, electrical stimulation, knee, rehabilitation |
Key Points |
|
|
|
Participants and intervention training protocol |
Sixty-four ACL reconstructed subjects who received a hamstring tendon graft and underwent post-surgical rehabilitation at the same rehabilitation centre were assessed for eligibility. Inclusion criteria were as follows:
Exclusion criteria were as follows:
Forty-six patients met the inclusion/exclusion criteria and were recruited for this study. A flow-chart illustrating patient enrolment is represented in Participants were assigned by means of randomization for age, gender and Tegner level to one of the two cohorts: the neuromuscular electrical stimulation superimposed on movement group (NMES+) and the no additional training group (NAT), which served as a control group. The NMES+ group was composed of 17 participants, 10 males and 7 females (age: 34.6 ± 8.7 years; stature: 1.70 ± 0.06 m; body mass: 66 ± 9 kg; Tegner level: 7.1 ± 0.9), and similarly, the NAT cohort was composed of 17 participants, 10 males and 7 females (age: 34.3 ± 9.9 years; stature: 1.74 ± 0.01 m; body mass: 74 ± 11 kg; Tegner level: 7.1 ± 0.9). The same standardized postoperative rehabilitation protocol was administrated under supervision by the same team of physical therapists 5 days a week, as previously described (Rocchi et al. Quadriceps muscle was stimulated during the STSTS task. Participants were asked to sit and maintain a 90° knee flexion angle. The stimulation lasted 8 seconds and was initiated by the quadriceps muscle contraction, as set in the electrical stimulator. Patients were asked to contract their quadriceps and, after the onset of the stimulation, to perform a sit-to-stand movement (concentric phase) followed by a stand-to-sit movement (eccentric phase) in 8 seconds, and then sitting to rest for 8 seconds, creating a duty cycle of 16 seconds. The semitendinosus muscle was stimulated during the SQ task for the first two weeks of training, and then it was stimulated during the STEP task from the third to the eighth week. During the SQ, participants were asked to stand up, which was the starting position, and then to squat down to approximately an 80° knee flexion angle (concentric phase) and finally to return in the upright position (eccentric phase). The stimulation lasted 8 seconds. Patients were asked to perform the SQ in 8 seconds, and then to sit, resting for 8 seconds, thus creating a duty cycle of 16 seconds. During the STEP task participants were asked to stand up with the foot of the operated limb, which was positioned on a 20 cm step. The foot of the operated limb was maintained in contact with the step for the duration of movement. Participants were asked to step up with the operated limb reaching full knee extension (starting position), then to step down (concentric phase), reaching the floor with the foot of the non-operated limb, and finally to step up again (eccentric phase). The stimulation lasted 8 seconds. Patients were asked to perform the STEP in 8 seconds, and then return to the starting position to rest for 8 seconds, creating a duty cycle of 16 seconds. A bar adjustable in height was positioned in front of participants for hand support during the STEP movement. Participants could modify the starting and ending knee angles during training if they felt pain or excessive discomfort to the operated knee joint. The duration of the concentric and the eccentric phases of all tasks varied over the intervention, along with the number of sets and repetitions throughout the programme. A detailed description of the NMES+ training protocol is reported in Before each NMES+ session, patients were asked to warm up on an exercise bicycle at low resistance for 10 minutes. During the first week of training (from the 15th to the 20th day), if patients were not able to perform cycling movements, a passive and an active knee joint mobilization was supervised by a physical therapist. Patients in the NAT group received the standard rehabilitation programme as previously described with no additional training. The therapists who performed the additional NMES rehabilitation were aware that patients were involved in a research study. The authors who performed the assessments, the MRI and data analysis were blinded on patients’ allocation. The study was approved by the Ethics Committee of the University of Rome La Sapienza (prot. n. 293/19), was carried out in accordance with the Declaration of Helsinki and all participants signed an informed consent form. |
Sample size and statistical power |
Sample size was a priori calculated with a significance level of α = 0.05 and a power of 95% based on data of a preliminary pilot investigation on 6 patients who were randomly assigned to one of the 2 groups (NMES+ and NAT). Effect size was calculated based on the mean limb symmetry index (LSI) of peak forces recorded during maximal voluntary isometric contraction of knee flexor muscles 60 days after surgery at 90°, which was 74.8% for the first group, and 64.4% for the second. A minimum of 17 patients for each group was required for the study. Additional patients were recruited to allow for dropouts. |
Assessments and data analysis |
Assessments were performed 15 days (T1), 30 days (T2), 60 days (T3), 90 days (T4) and in the long term after surgery (T5). For the long-term assessment, patients were only assessed if they had returned to their pre-injury activity level for at least two months. Mean time of the T5 assessment was 380 days. A timeline representation of the assessments is reported in |
Morphological examination of thigh muscles and tendons |
Morphological examination via MRI of thigh muscles and tendons was performed at T5. Axial Dixon sequences were acquired using a 1.5 T MRI scanner (Ingenia; Philips, Amsterdam, The Netherlands) from the level of the iliac crest to the tibial tuberosity spanning both legs while the subject lay supine in the scanner. The images were acquired in 2 stations with 230 slices per station and a 10% overlap between stations. Slice thickness was 2.4 mm with a 0.5 mm intersection gap, repetition time (TR) was 4.1milliseconds, echo time 1 (TE 1) was 5.9 milliseconds, and echo time 1.92 (TE 2) was 3.9 milliseconds. Both TEs were collected when water and fat were in phase and out of phase. The voxel size was 1.1-1.1-2.4 mm, and the field of view (FOV) was 450-288-279 mm. The Fast Field Echo (FFE) images provided excellent visibility of the muscle for manual segmentation. Axial proton density (PD) 2-dimensional turbo spin-echo sequences were also acquired from the level of the mid-thigh to below the tibial tuberosity spanning both legs. The images were acquired in 1 station of 80 slices with a slice thickness of 3.2 mm and a 0.5 mm intersection gap; TR was 3954 milliseconds and TE was 30 milliseconds. The voxel size was 0.8-0.8 mm, and the FOV was 380-220-296 mm. The PD images provided excellent visibility of the tendons for manual segmentation. Image analysis was performed by two experienced musculoskeletal radiologists using the software OsiriX (version 11.0, Pixmeo Sarl, Geneva, Switzerland). Tendons of the donor muscles were first inspected to assess the regeneration and morphology. Tendon regeneration was confirmed if the tendon was visible below the musculo-tendinous junction as in previous literature (Konrath et al. Volume of the vastus medialis (VM), vastus lateralis (VL), vastus intermedium (VI), rectus femoris (RF), sartorius (SA), gracilis (GR), semitendinosus (ST), semimembranosus (SM) and biceps femoris (BF) muscle bellies were calculated. The margins of every single muscle were manually traced in each axial slice. The margins of the axial slices were used to represent a 3D model of each muscle. Briefly, for each muscle, cross-sectional areas were fitted with a cubic spline and plotted against femur length. Muscle volumes were calculated as the area under the curve using the measured and splined data points as in previous studies (Morse et al., |
Muscle strength assessment |
Muscle strength was assessed by means of maximal isometric voluntary contractions (MVIC) and isokinetic tests. MVIC of the knee extensor muscles at a knee angle of 30° and 90° and MVIC of the knee flexor muscles at a knee angle of 90° were carried out in both limbs at T3, T4 and T5. At T5, knee flexor muscles were assessed also at a knee angle of 60°, which was not performed in earlier assessments to avoid muscle injuries. During the assessment, participants were seated on a leg-extension machine (Technogym, Forli-Cesena, Italy) for the knee extension MVIC and on a leg-curl machine (Technogym, Forli-Cesena, Italy) for the knee flexion MVIC. Patients were fastened using three crossing belts on both machines. Muscle force was recorded using a load cell connected to a computerized system unit (MuscleLab, Bosco-System Technologies, Rieti, Italy). The maximal voluntary isometric contraction task consisted of a progressive increase to a maximum force exerted by the leg muscles. Participants were able to follow their performance on a computer screen and were verbally encouraged to achieve their maximum and to maintain that maximum for at least 2 seconds before relaxing. Maximal voluntary isometric contraction was calculated as the largest 1-second average reached within any single force recording. Peak forces exerted by each limb were recorded. Side-to-side symmetry was quantified for peak forces using the limb symmetry index, which was calculated as the ratio between the involved and uninvolved limb expressed as a percentage. Absolute force was calculated by normalizing peak forces recorded during all maximal voluntary isometric contractions to the body weight of each participant. The side-to-side symmetry and absolute force values were used for further analysis. |
Functional performance assessment |
Functional performance was assessed at T1, T2, T3, T4 and T5 by means of a STSTS movement and a countermovement jump (CMJ) which were performed on two adjacent force platforms. The STSTS was performed at T1, T2, T3, T4 and T5. The sit-to-stand-to-sit task consisted of rising from a seat as fast as possible and sitting down as fast as possible. The height of the seat was adjusted at each assessment to obtain a 90° angle at the knee joint. Participants were asked to keep their trunk in a vertical position, their arms held across the chest, and their feet shoulder-width apart. Participants were verbally instructed to stand up as fast as possible and maintain the upright position for 5 seconds and then to sit down as fast as possible. The CMJ was performed at T4 and T5. Participants were asked to stand in an upright position and maintain their hands on their hips during performance of the CMJ to minimize the influence of the upper limbs. They were asked to quickly squat with knees flexed to approximately 90° and then jump immediately as high as possible without pausing. Ground reaction forces of STSTS and CMJ were measured by means of two, six-component force platforms (KISTLER, model 9281 B; Winterthur, Switzerland; 100-Hz sampling frequency), which were positioned one below each foot. Vertical components of the ground reaction force were filtered offline using a digital, low-pass, second-order, Butterworth filter with a cutoff frequency set at 15 Hz. Signals from the two force platforms were summed. The STSTS peak forces of the sit-to-stand phase and the stand-to-sit phase were analyzed in accordance with previous studies (Laudani et al., |
Statistical analysis |
Descriptive statistics were used to summarize demographic data and the Shapiro-Wilk test was used to test the distribution of all variables. A two-way analysis of variance (ANOVA) for repeated measures was conducted to investigate the effect of rehabilitation and time on all the assessed variables. A one-way ANOVA was used to analyse the differences between the two groups for MVIC of knee flexor muscles at 60° and MRI parameters at T5. A Mann-Whitney test was used to investigate the differences between the two groups for tendon regeneration. An analysis of covariance (ANCOVA) was conducted to assess the effects of NMES+ and standard rehabilitation on all variables, accounting for the gender of the participants. An ANCOVA was also conducted to assess the effects of NMES+ and standard rehabilitation on the assessments performed at T5, after accounting for tendon regeneration. Finally, to investigate the predictive variables of the tendon regeneration, a binary logistic regression analysis was performed an all data using tendon regeneration as a dependent variable. Student’s t-test was used to locate all the significant differences. A significance level of p < 0.05 was adopted. The analyses were performed using SPSS version 20.0 (SPSS, Inc, Chicago, IL). |
|
|
Regeneration and morphology of harvested tendons and muscles |
Regeneration of the semitendinosus tendon was observed in 6 participants of the NMES+ group and 8 of the NAT group. Regeneration of the gracilis tendon was observed in 7 participants of the NMES+ group and 3 participants of the NAT group. Regenerated tendons of the semitendinosus muscle showed no significant differences between the two groups in width (NMES+ = 4.7 ± 2.3mm; NAT = 3.8 ± 1.8mm) and length (NMES+ = 158.3 ± 30.6 mm; NAT = 155.0 ± 33.4 mm), but the regenerated tendon was significantly longer than the contralateral limb in both groups (NMES+ 158.3 ± 30.6 mm vs. 121.7 ± 27.9 mm; p < 0.01); NAT (155.0 ± 33.4 mm vs. 106.3 ± 10.6 mm; p < 0.01). The regenerated tendon was not significantly different from the contralateral limb in width (NMES+: operated 4.7 ± 2.3mm, contralateral 4.0 ± 1.3 mm; NAT: operated 3.8 ± 1.8 mm, contralateral 4.6 ± 0.7 mm). Regenerated tendons of the gracilis muscle in both groups showed no between-limb differences in width (NMES+: operated 3.9 ± 1.7 mm, contralateral 3.8 ± 0.7 mm; NAT: operated 3.1 ± 2.0 mm, contralateral 3.0 ± 0.0 mm) and length (NMES+: operated 111.4 ± 37.2 mm, contralateral 98.6 ± 10.7 mm; NAT: operated 66.7 ± 20.8 mm, contralateral 80.0 ± 26.5 mm), and no between-group differences. None of the variables assessed in this study were a predictor of tendon regeneration, as shown by the regression analysis model which failed to predict tendon regeneration (β = 0.251; p = 0.61). For participants showing a regeneration of the semitendinosus tendon, no significant differences were observed between the two groups for muscle belly volume (NMES+ = 120.7 ± 82.5 mm3; NAT = 111.4 ± 53.2 mm3) and length (NMES+ = 244.2 ± 46.7 mm; NAT = 233 ± 29.3 mm). In the NAT group there was a significant difference in the operated compared with the non-operated limb for muscle belly length (233 ± 29.3 mm vs. 294.9 ± 29.3 mm; p < 0.01) and volume (111.4 ± 53.2 mm3 ± 182.1 ± 75.6; p < 0.01). For patients showing no regeneration of the tendon, no between-groups differences were observed, but the harvested semitendinosus when compared to the contralateral limb had a lower volume in NMES+ group (82.2 ± 49.2 mm3 vs. 138.1 ± 62.6 mm3; p < 0.01) and NAT group (53.0 ± 19.2 mm3 vs. 94.8 ± 45.3 mm3; p < 0.01), and a lower length in NMES+ group (206.1 ± 42.0 vs. 277.0 ± 44.1; p < 0.01) and NAT group (216.4 ± 36.5 vs. 265.0 ± 68.9; p < 0.01). Participants showing a regeneration of the gracilis tendon in the NMES+ group had in the operated compared to the non-operated limb a lower volume (66.7 ± 27.7 mm3 vs. 84.9 ± 23.3 mm3; p < 0.05) and a lower length (281.3 ± 25.8 mm vs. 314.7 ± 22.9 mm; p < 0.05) of gracilis muscle belly. While participants who did not show a regeneration had in the operated compared to the non-operated limb a lower length (243.2 ± 52.9 mm vs. 296.8 ± 17.4 mm; p < 0.05) of gracilis muscle belly. Participants who did not show a regeneration of gracilis tendon in the NAT group had in the operated compared to the non-operated limb a lower volume (57.6 ± 31.6 mm3 vs. 91.7 ± 50.3 mm3; p < 0.05) and a lower length (239.3 ± 34.6 mm vs. 298.4 ± 51.2 mm; p < 0.05) in gracilis muscle belly. |
Morphology of the other thigh muscles |
No differences between the two groups were observed for muscle belly volume of all muscles, but the ANCOVA showed that gender had an effect, with females having lower muscle belly volume in both limbs. Mean values and standard deviations of the volumes of all muscle bellies analyzed in male and female patients of each group, with significant differences after the post-hoc analysis are represented in |
Muscle strength |
Significant differences were identified between the two groups for muscle strength normalized by body weight of the operated limbs. Mean values with standard deviations and significant differences following the post-hoc analysis are reported in The ANOVA also showed an effect of time on MVICs results. In the NMES+ group there was a significant increase of LSI of muscle strength of knee extensors and flexors at 90° between T3 and T4, and for all the measurements between T4 and T5 ( |
Functional performance |
The mean values and standard deviations of the LSI of peak forces recorded during the sit-to-stand, stand-to-sit, the eccentric phase of the CMJ, and the concentric phase of the CMJ, along with the significant differences between the two groups after the post-hoc analysis are presented within |
|
|
The main result of this study was that a novel training intervention based on neuromuscular electrical stimulation superimposed on functional movements during the early phase following ACL reconstruction with STGR tendon graft, as an additional treatment to standard rehabilitation, was more effective in improving muscle strength and knee function, both in the short and in the long term after surgery, than a standard rehabilitation with no additional training intervention. Interestingly, these adaptations occurred regardless of tendon regeneration of the donor muscles. Increasing the intensity of strength training with traditional physical therapy exercises is difficult in the first two months after surgery as it is impossible to overload the knee joint with heavy loads, which are essential to increase muscle strength. The superimposition of NMES allowed an increase of the intensity of muscle activation at each repetition of easy functional tasks (squat, sit-to-stand, stepping) which can be performed in the early phase after surgery by all the patients but do not normally require high intensity muscle activations. In addition, both the hamstring muscles, which were harvested for ACL graft, and the quadriceps muscle are affected by atrophy and inhibition (Hopkins and Ingersoll, The benefits of NMES+ training were apparent following the first assessment, which was performed 15 days after the beginning of training (i.e., 30 days after surgery). Participants of the NMES+ group showed a higher symmetry in lower limb loading was found in NMES+ compared to NAT during the stand-to-sit movement, which is comparable to the results of Labanca et al. ( This result was confirmed during the second assessment, which was carried out at the end of the NMES+ training intervention (i.e., 60 days after surgery), and at this time point NMES+ participants also showed a higher symmetry than the NAT group during the sit-to-stand movement. In addition, 60 days after surgery it was possible to safely assess muscle strength for the first time. Participants in the NMES+ group showed higher absolute muscle strength and higher symmetry of the knee extensor muscles in the operated limb at 30° than in the NAT group. To the best of the authors’ knowledge, there are no strength training interventions based on high intensity muscle contractions starting as early as fifteen days after surgery, except Labanca et al. ( Interestingly, one month after the end of NMES+ treatment (i.e., 90 days after surgery), participants in the NMES+ group maintained higher thigh circumference, lower knee circumference, higher knee joint range of motion of the operated knee and a higher symmetry in lower limb loading during the sit-to-stand and stand-to-sit tests than participants of the NAT group. This trend is confirmed by the long-term assessment, i.e., at about one year after surgery, whereby the muscle strength of the operated limb for both knee extensor and flexor muscles remained higher in the NMES+ group compared to the NAT group. This observation is supported by the results of previous studies showing that an early gain in strength and function is predictive of long-term outcomes (Labanca et al., The higher increase in strength of the quadriceps muscle in the NMES+ group than in the NAT group might also explain the higher improvements in other functional outcomes such as the sit-to-stand and the concentric phase of the CMJ. It is interesting to note that participants in the NMES+ group also showed higher symmetry than NAT participants during the stand-to-sit test and during the eccentric phase of the CMJ. These latter tests require high levels of strength and power in the knee flexor muscles. Previous research reported the important role of knee flexor activation in jumping performance, particularly in the first phase of the countermovement (Nagano et al., No significant differences were found in the morphology of muscle bellies and tendons between the two groups and between participants with or without regeneration of the tendon. This is in contrast with previous studies reporting a larger cross-sectional area of the ST and GR regenerated tendons following ACL reconstruction (Gill et al., Finally, there were no differences between the two groups in the number of patients showing tendon regeneration and none of the assessed parameters in this study were predictive of the regeneration of the tendon. The literature suggests that regeneration of the tendon may be linked to anatomical and surgical factors or to the outcome of the organization of precursor tendon cells in the post-surgical hematoma (Eriksson et al., One last point needs to be discussed for this study. Only two groups of patients were included in the present study, i.e. the NMES+ group and a control group. We did not add a third group of patients performing only the additional functional exercises without superimposing NMES since in our previous research (Labanca et al. From a practical point of view, some methodological issues related to the intensity of stimulation during training should be discussed. It has been suggested that the intensity of stimulation should be increased as much as possible in accordance with the individual tolerance to maximize motor unit recruitment (Maffiuletti The main limitation of this study is that the gracilis muscle was not stimulated even if harvested for surgical graft. This choice was related to the fact that in a preliminary pilot investigation for this study, gracilis identification and stimulation was extremely difficult and resulted in high discomfort, making it impossible to appropriately increase the intensity of stimulation. A second limitation of the study is that the follow-up of participants ended at a mean of 12.5 months after surgery. In future studies follow up time should be extended. A third limitation of this study is that the sample size reached the minimum necessary to obtain a significant effect size based on an |
|
|
In conclusion, the quality of rehabilitation can be greatly improved by adding a two-month structured resistance-training intervention, based on neuromuscular electrical stimulation superimposed on functional movements, in the early phase following ACL reconstruction with hamstring graft, as shown by the improvements in knee function and muscle strength in both the short and long term after surgery, regardless of tendon regeneration. Even if in the present study no significant NMES+ effects were observed, further studies are required to investigate whether extending this additional intervention beyond two months has an effect on tendon regeneration too. |
ACKNOWLEDGEMENTS |
This study was financially supported by a research grant from DJO Global. The experiments comply with the current laws of the country in which they were performed. The authors have no conflict of interest to declare. The datasets generated during and/or analyzed during the current study are not publicly available, but are available from the corresponding author who was an organizer of the study. |
AUTHOR BIOGRAPHY |
|
REFERENCES |
|
Email link to this article