Aadland E., Andersen L.B., Anderssen S.A., Resaland G.K., Kvalheim O.M. (2020) Accelerometer epoch setting is decisive for associations between physical activity and metabolic health in children. Journal of Sports Sciences 38, 256-263. |
Ayabe M., Kumahara H., Morimura K., Tanaka H. (2013) Epoch length and the physical activity bout analysis: An accelerometry research issue. BMC Research Notes 6, 20. |
Baquet G., Stratton G., Van Praagh E., Berthoin S. (2007) Improving physical activity assessment in prepubertal children with high-frequency accelerometry monitoring: a methodological issue. Preventive Medicine 44, 143-147. |
Baxter-Jones A.D.G., Jackowski S.A. (2021) Sex differences in bone mineral content and bone geometry accrual: a review of the Paediatric Bone Mineral Accural Study (1991–2017). Annals of Human Biology 48, 503-516. |
Bonjour J.P., Chevalley T., Ferrari S., Rizzoli R. (2009) The importance and relevance of peak bone mass in the prevalence of osteoporosis. Salud Pública de México 51, 5-17. |
Brailey G., Metcalf B., Lear R., Price L., Cumming S., Stiles V. (2022) A comparison of the associations between bone health and three different intensities of accelerometer-derived habitual physical activity in children and adolescents: a systematic review. Osteoporosis International 33, 1191-1222. |
Clevenger K.A., Pfeiffer K.A., Mackintosh K.A., McNarry M.A., Brønd J., Arvidsson D., Montoye A.H.K. (2019) Effect of sampling rate on acceleration and counts of hip- and wrist-worn ActiGraph accelerometers in children. Physiological Measurement 40, 095008. |
Colley R.C., Tremblay M.S. (2011) Moderate and vigorous physical activity intensity cut-points for the Actical accelerometer. Journal of Sports Sciences 29, 783-789. |
Edwardson C.L., Gorely T. (2010) Epoch length and its effect on physical activity intensity. Medicine & Science in Sports & Exercise 42, 928-934. |
Elhakeem A., Heron J., Tobias J.H., Lawlor D.A. (2020) Physical Activity Throughout Adolescence and Peak Hip Strength in Young Adults. JAMA Network Open 3, e2013463. |
Fairclough S.J., Taylor S., Rowlands A.V., Boddy L.M., Noonan R.J. (2019) Average acceleration and intensity gradient of primary school children and associations with indicators of health and well-being. Journal of Sports Sciences 37, 2159-2167. |
Gabriel K.P., McClain J.J., Schmid K.K., Storti K.L., High R.R., Underwood D.A., Kuller L.H., Kriska A.M. (2010) Issues in accelerometer methodology: the role of epoch length on estimates of physical activity and relationships with health outcomes in overweight, post-menopausal women. International Journal of Behavioral Nutrition and Physical Activity 7, 53. |
Gunter K.B., Almstedt H.C., Janz K.F. (2012) Physical activity in childhood may be the key to optimizing lifespan skeletal health. Exercise and Sport Sciences Reviews 40, 13-21. |
Haapala E.A., Vaisto J., Veijalainen A., Lintu N., Wiklund P., Westgate K., Ekelund U., Lindi V., Brage S., Lakka T.A. (2017) Associations of objectively measured physical activity and sedentary time with arterial stiffness in pre-pubertal children. Pediatric Exercise Science 29, 326-335. |
Hart N.H., Nimphius S., Rantalainen T., Ireland A., Siafarikas A., Newton R.U. (2017) Mechanical basis of bone strength: influence of bone material, bone structure and muscle action. Journal of Musculoskeletel and Neuronal Interactions 17, 114-139. |
Heil D.P., Brage S., Rothney M.P. (2012) Modeling physical activity outcomes from wearable monitors. Medicine & Science in Sports & Exercise 44, 50-60. |
Janz K.F., Burns T.L., Levy S.M., Torner J.C., Willing M.C., Beck T.J., Gilmore J.M., Marshall T.A. (2004) Everyday activity predicts bone geometry in children: the iowa bone development study. Medicine & Science in Sports & Exercise 36, 1124-1131. |
Janz K.F., Burns T.L., Torner J.C., Levy S.M., Paulos R., Willing M.C., Warren J.J. (2001) Physical activity and bone measures in young children: the Iowa bone development study. Pediatrics 107, 1387-1393. |
Janz K.F., Letuchy E.M., Burns T.L., Eichenberger Gilmore J.M., Torner J.C., Levy S.M. (2014) Objectively measured physical activity trajectories predict adolescent bone strength: Iowa Bone Development Study. British Journal of Sports Medicine 48, 1032-1036. |
Janz K.F., Letuchy E.M., Eichenberger Gilmore J.M., Burns T.L., Torner J.C., Willing M.C., Levy S.M. (2010) Early physical activity provides sustained bone health benefits later in childhood. Medicine & Science in Sports & Exercise 42, 1072-1078. |
Janz K.F., Rao S., Baumann H.J., Schultz J.L. (2003) Measuring children’s vertical ground reaction forces with accelerometry during walking, running, and jumping: The Iowa Bone Development Study. Pediatric Exercise Science 15, 34-43. |
Kwon S., Andersen L.B., Grøntved A., Kolle E., Cardon G., Davey R., Kriemler S., Northstone K., Page A.S., Puder J.J., Reilly J.J., Sardinha L.B., van Sluijs E.M.F., Janz K.F. (2019) A closer look at the relationship among accelerometer-based physical activity metrics: ICAD pooled data. International Journal of Behavioral Nutrition and Physical Activity 16, 40. |
Loprinzi P.D., Lee H., Cardinal B.J., Crespo C.J., Andersen R.E., Smit E. (2012) The relationship of Actigraph accelerometer cut-points for estimating physical activity with selected health outcomes. Research Quarterly for Exercise and Sport 83, 422-430. |
Maylor B.D., Rowlands A.V., Dawkins N.P., Edwardson C.L. (2021) Radar Plot Generator (Version 2.0) [Source code] 2022. |
Metcalf K.M., Letuchy E.M., Levy S.M., Janz K.F. (2020) An 8-Year longitudinal analysis of physical activity and bone strength from adolescence to emerging adulthood: The Iowa Bone Development Study. Pediatric Exercise Science 32, 58-64. |
Meyer U., Ernst D., Schott S., Riera C., Hattendorf J., Romkes J., Granacher U., Göpfert B., Kriemler S. (2015) Validation of two accelerometers to determine mechanical loading of physical activities in children. Journal of Sports Sciences 33, 1702-1709. |
Migueles J.H., Cadenas-Sanchez C., Tudor-Locke C., Löf M., Esteban-Cornejo I., Molina-Garcia P., Mora-Gonzalez J., Rodriguez-Ayllon M., Garcia-Marmol E., Ekelund U., Ortega F.B. (2019a) Comparability of published cut-points for the assessment of physical activity: Implications for data harmonization. Scandinavian Journal of Medicine & Science in Sports 29, 566-574. |
Migueles J.H., Rowlands A.V., Huber F., Sabia S., van Hees V.T. (2019b) GGIR: A research community–driven ppen source R package for generating physical activity and sleep outcomes from multi-day raw accelerometer data. Journal for the Measurement of Physical Behaviour 2, 188-196. |
Mirwald R.L., Baxter-Jones A.D., Bailey D.A., Beunen G.P. (2002) An assessment of maturity from anthropometric measurements. Medicine & Science in Sports & Exercise 34, 689-694. |
Ness A.R., Leary S.D., Mattocks C., Blair S.N., Reilly J.J., Wells J., Ingle S., Tilling K., Smith G.D., Riddoch C. (2007) Objectively measured physical activity and fat mass in a large cohort of children. Plos Medicine 4, e97. |
Nilsson A., Ekelund U., Yngve A., Sjöström M. (2001) Assessing physical activity among children with activity monitors using different time sampling intervals and placements. Medicine & Science in Sports & Exercise 33. |
Orme M., Wijndaele K., Sharp S.J., Westgate K., Ekelund U., Brage S. (2014) Combined influence of epoch length, cut-point and bout duration on accelerometry-derived physical activity. International Journal of Behavioral Nutrition and Physical Activity 11, 34. |
Parsons C.M., Dennison E.M., Fuggle N., Breasail M.Ó., Deere K., Hannam K., Tobias J.H., Cooper C., Ward K.A. (2022) Assessment of Activity Profiles in Older Adults and Lower Limb Bone Parameters: Observations from the Hertfordshire Cohort Study. Calcified Tissue International 111, 13-20. |
R Core Team. (2021). R: A Language and Environment for Statistical Computing, R Foundation for Statistical Computing, Vienna, Austria. |
Rowlands A.V., Dawkins N.P., Maylor B., Edwardson C.L., Fairclough S.J., Davies M.J., Harrington D.M., Khunti K., Yates T. (2019a) Enhancing the value of accelerometer-assessed physical activity: meaningful visual comparisons of data-driven translational accelerometer metrics. Sports Medicine - Open 5, 47. |
Rowlands A.V., Edwardson C.L., Davies M.J., Khunti K., Harrington D.M., Yates T. (2018) Beyond cut points: Accelerometer metrics that capture the physical activity profile. Medicine & Science in Sports & Exercise 50, 1323-1332. |
Rowlands A.V., Edwardson C.L., Dawkins N.P., Maylor B.D., Metcalf K.M., Janz K.F. (2020) Physical activity for bone health: How much and/or how hard?. Medicine & Science in Sports & Exercise 52, 2331-2341. |
Rowlands A.V., Fairclough S.J., Yates T., Edwardson C.L., Davies M., Munir F., Khunti K., Stiles V.H. (2019b) Activity intensity, volume, and norms: utility and interpretation of accelerometer metrics. Medicine & Science in Sports & Exercise 51, 2410-2422. |
Rowlands A.V., Sherar L.B., Fairclough S.J., Yates T., Edwardson C.L., Harrington D.M., Davies M.J., Munir F., Khunti K., Stiles V.H. (2019c) A data-driven, meaningful, easy to interpret, standardised accelerometer outcome variable for global surveillance. Journal of Science and Medicine in Sport 22, 1132-1138. |
Rowlands A.V., Stiles V.H. (2012) Accelerometer counts and raw acceleration output in relation to mechanical loading. Journal of Biomechanics 45, 448-454. |
Saint-Maurice P.F., Laurson K., Welk G.J., Eisenmann J., Gracia-Marco L., Artero E.G., Ortega F., Ruiz J.R., Moreno L.A., Vicente-Rodriguez G., Janz K.F. (2018) Grip strength cutpoints for youth based on a clinically relevant bone health outcome. Archives of Osteoporosis 13, 92. |
Sanders T., Cliff D.P., Lonsdale C. (2014) Measuring adolescent boys' physical activity: bout length and the influence of accelerometer epoch length. Plos One 9, e92040. |
Scheers T., Philippaerts R., Lefevre J. (2012) Variability in physical activity patterns as measured by the SenseWear Armband: how many days are needed?. European Journal of Applied Physiology 112, 1653-1662. |
Sherar L.B., Griew P., Esliger D.W., Cooper A.R., Ekelund U., Judge K., Riddoch C. (2011) International children's accelerometry database (ICAD): Design and methods. BMC Public Health 11, 485. |
Skinner A.M., Vlachopoulos D., Barker A.R., Moore S.A., Rowlands A.V., Soininen S., Haapala E.A., Väistö J., Westgate K., Brage S., Lakka T.A. (2023) Physical activity volume and intensity distribution in relation to bone, lean and fat mass in children. Scandinavian Journal of Medicine & Science in Sports 33, 267-282. |
Stiles V.H., Metcalf B.S., Knapp K.M., Rowlands A.V. (2017) A small amount of precisely measured high-intensity habitual physical activity predicts bone health in pre- and post-menopausal women in UK Biobank. International Journal of Epidemiology 46, 1847-1856. |
Tobias J. (2014) Physical Activity and Bone: May the Force be with You. Frontiers in Endocrinology 5. |
Troiano R.P., McClain J.J., Brychta R.J., Chen K.Y. (2014) Evolution of accelerometer methods for physical activity research. British Journal of Sports Medicine 48, 1019-1023. |
Trost S.G., Loprinzi P.D., Moore R., Pfeiffer K.A. (2011) Comparison of accelerometer cut points for predicting activity intensity in youth. Medicine & Science in Sports & Exercise 43, 1360-1368. |
van Hees V.T., Fang Z., Langford J., Assah F., Mohammad A., da Silva I.C., Trenell M.I., White T., Wareham N.J., Brage S. (2014) Autocalibration of accelerometer data for free-living physical activity assessment using local gravity and temperature: an evaluation on four continents. Journal of Applied Physiology 117, 738-744. |
Ward R.C., Janz K.F., Letuchy E.M., Peterson C., Levy S.M. (2019) Contribution of high school sport participation to young adult bone strength. Medicine & Science in Sports & Exercise 51, 1064-1072. |
Zymbal V., Baptista F., Letuchy E.M., Janz K.F., Levy S.M. (2019) Mediating effect of muscle on the relationship of physical activity and bone. Medicine & Science in Sports & Exercise 51, 202-210. |
|