Aguiar M., Botelho G., Lago C., Maças V., Sampaio J. (2012) A review on the effects of soccer small-sided games. Journal of Human Kinetics 33, 103-113. |
Ambroży T., Rydzik Ł., Obmiński Z., Błach W., Błach B. (2021) The effect of high-intensity interval training periods on morning serum testosterone and cortisol levels and physical fitness in men aged 35–40 years. Journal of Clinical Medicine 10, 2143. |
Arslan E., Kilit B., Clemente FM., Muewska-Cialowicz E., Soylu Y., Sogut M., Akca F., Gokkaya M., Silva A.F. (2022) Effects of small-sided games training versus high-intensity interval training approaches in young basketball players. International Journal of Environmental Research and Public Health 19, 2931. |
Aschendorf P. F., Zinner C., Delextrat A., Engelmeyer E., Mester J. (2018) Effects of basketball-specific high-intensity interval training on aerobic performance and physical capacities in youth female basketball players. The Physician and Sportsmedicine 47, 65-70. |
Balčiūnas M., Stonkus S., Abrantes C., Sampaio J. (2006) Long term effects of different training modalities on power, speed, skill and anaerobic capacity in young male basketball players. Journal of Sports Science and Medicine 5, 163-170. |
Bangsbo J., Fedon M.I., Krustrup P. (2008) The Yo-Yo intermittent recovery test. Sports Medicine 38, 37-51. |
Barzegar H., Arazi H., Mohsebbi H., Sheykhlouvand M., Forbes S.C. (2021) Caffeine co-ingested with carbohydrate on performance recovery in national level paddlers: a randomized, double-blind, crossover, placebo-controlled trial. Journal of Sports Medicine and Physical Fitness 62, 337-342. |
Bayati M., Farzad B., Gharakhanlou R., Agha-Alinejad H. (2011) A practical model of low-volume high-intensity interval training induces performance and metabolic adaptations that resemble ‘all-out’ sprint interval training. Journal of Sports Science and Medicine 10, 571-576. |
Ben Abdelkrim N., El Fazaa S., El Ati J. (2007) Time-motion analysis and physiological data of elite under-19-year-old basketball players during competition. British Journal of Sports Medicine 41, 69-75. |
Buchheit M., Laursen P. B. (2013) High-intensity interval training, solutions to the programming puzzle: Part I: cardiopulmonary emphasis. Sports Medicine 43, 313-338. |
Castagna C., Impellizzeri F. M., Chaouachi A., Ben Abdelkrim N., Manzi V. (2011) Physiological responses to ball-drills in regional level male basketball players. Journal of Sports Science 29, 1329-1336. |
Clemente F.M., Soylu Y., Arslan E., Kilit B., Garrett J., van den Hoek D., Badicu G., Filipa Silva A. (2022) Can high-intensity interval training and small-sided games be effective for improving physical fitness after detraining? A parallel study design in youth male soccer players. Sports Medicine and Rehabilitation 10, e13514. |
Delextrat A., Martinez A. (2014) Small-sided game training improves aerobic capacity and technical skills in basketball players. International Journal of Sports Medicine 35, 385-391. |
Earle, R. W. (2006) Weight training exercise prescription. In Essentials of Personal Training Symposium Workbook. Lincoln, NE: NSCA Certification Commission, 3-39. |
Engel F.A., Ackermann A., Chtourou H., Sperlich B. (2018) High-intensity interval training performed by young athletes: A systematic review and meta-analysis. Frontiers in Physiology 9, 1012. |
Faul F., Erdfelder E., Lang A. G., Buchner A. (2007) G*Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavioral Research Methods 39, 175-191. |
Fereshtian S., Sheykhlouvand M., Forbes S., Agha-Alinejad H., Gharaat M. (2017) Physiological and performance responses to high-intensity interval training in female inline speed skaters. Apunts Medicina de l'Esport 52, 131-138. |
Figueira B., Mateus N., Esteves D., Dadelienė R., Paulauskas R. (2022) Physiological responses and technical-tactical performance of youth basketball players: A brief comparison between 3x3 and 5x5 basketball. Journal of Sports Science and Medicine 21, 332-340. |
García F., Vázquez-Guerrero J., Castellano J., Casals M., Schelling X. (2020) Differences in physical demands between game quarters and playing positions on professional basketball players during official competition. Journal of Sports Science and Medicine 19, 256-263. |
García-Pinillos F., Cámara-Pérez J. C., Soto-Hermoso V. M., Latorre-Román P. Á. (2017) A high intensity interval training (HIIT)-based running plan improves athletic performance by improving muscle power. Journal of Strength and Conditioning Research 31, 146-153. |
Gharaat M. A., Sheykhlouvand M., Eidi L. A. (2020) Performance and recovery: effects of caffeine on a 2000-m rowing ergometer. Sport Sciences for Health 16, 531-542. |
Heishman A. D., Daub B. D., Miller R. M., Freitas E. D. S., Bemben M. G. (2020) Monitoring external training loads and neuromuscular performance for division I basketball players over the preseason. Journal of Sports Science and Medicine 19, 204-212. |
Hernández S., Ramirez-Campillo R., Álvarez C., Sanchez-Sanchez J., Moran J., Pereira L. A., Loturco I. (2018) Effects of plyometric training on neuromuscular performance in youth basketball players: A pilot study on the influence of drill randomization. Journal of Sports Science and Medicine 17, 372-378. |
Klusemann M.J., Pyne D.B., Foster C., Drinkwater E.J. (2012) Optimising technical skills and physical loading in small-sided basketball games. Journal of Sports Science 30, 1463-1471. |
Kraemer, W.J. and Fry, A.C. (1995) Strength testing: development and evaluation of methodology. In: physiological assessment of humane fitness. P. Maud and C. Foster. Eds. (pp.115-138.) Champaign, IL: Human Kinetics. |
Laursen, P. B. and Buchheit, M. (2019) Science and Application of HighIntensity Interval Training, 1st Edn, Champaign: Human
Kinetics. |
Lee K.H., Lee K., Chol Y.C. (2020) Very short-term high intensity interval training in high school soccer players. Journal of Men's Health 16, 1-8. |
Maffiuletti N. A., Dugnani S., Folz M., Pierno E. D., Mauro F. (2002) Effect of combined electrostimulation and plyometric training on vertical jump height. Medicine and Science in Sports and Exercise 34, 1638-1644. |
Matthew D., Delextrat A. (2009) Heart rate, blood lactate concentration, and time-motion analysis of female basketball players during competition. Journal of Sports Sciences 27, 813-821. |
Miller M.G., Herniman T.J., Ricard M.D., Cheatham C.C., Michael T.J. (2006) The effects of a 6-week plyometric training program on agility. Journal of Sport Science and Medicine 5, 459-465. |
Panoutsakopoulos V., Bassa E. (2023) Countermovement jump performance is related to ankle flexibility and knee extensors torque in female adolescent volleyball athletes. Journal of Functional Morphology and Kinesiology 8, 76. |
Rasouli Mojez M., Gaeini A. A., Choobineh S., Sheykhlouvand M. (2021) Hippocampal oxidative stress induced by radiofrequency electromagnetic radiation and the neuroprotective effects of aerobic exercise in rats: a randomized control trial. Journal of Physical Activity and Health 18, 1532-1538. |
Rimmer E., Sleveret G. (2000) Effects of a plyometric intervention program on sprint performance. Journal of Strength and Conditioning Research 14, 295-301. |
Sayevand Z., Nazem F., Nazari A., Sheykhlouvand M., Forbes S. C. (2022) Cardioprotective effects of exercise and curcumin supplementation against myocardial ischemia-reperfusion injury. Sport Sciences for Health 18, 1011-1019. |
Seitz L.B., Reyes A., Tran T.T., Saez de Villarreal E.S., Haff G.G. (2014) Increases in lower-body strength transfer positively to sprint performance: a systematic review with meta-analysis. Sports Medicine 44, 1693-1702. |
Sekine Y., Hoshikawa S., Hirose N. (2019) Longitudinal age-related morphological and physiological changes in adolescent male basketball players. Journal of Sports Science and Medicine 18, 751-757. |
Sheykhlouvand M., Arazi H., Astorino T. A., Suzuki K. (2022) Effects of a new form of resistance-type high-intensity interval training on cardiac structure, hemodynamics, and physiological and performance adaptations in well-trained kayak sprint athletes. Frontiers in Physiology 13, 850768. |
Sheykhlouvand M., Gharaat 5, Khalili M., Agha-Alinejad E., Rahmaninia H., Arazi H. (2018a) Low-volume high-intensity interval versus continuous endurance training: effects on hematological and cardiorespiratory system adaptations in professional canoe polo athletes. Journal of Strength and Conditioning Research 32, 1852-1860. |
Sheykhlouvand M., Gharaat M., Khalili E., Agha-Alinejad H. (2016a) The effect of high-intensity interval training on ventilatory threshold and aerobic power in well-trained canoe polo athletes. Science and Sports 31, 283-289. |
Sheykhlouvand M., Khalili E., Agha-Alinejad H., Gharaat M.A. (2016b) Hormonal and physiological adaptations to high-intensity interval training in professional male canoe polo athletes. Journal of Strength and Conditioning Research 30, 859-866. |
Sheykhlouvand M., Khalili E., Gharaat M., Arazi H., Khalafi M., Tarverdizadeh B. (2018b) Practical model of low-volume paddling-based sprint interval training improves aerobic and anaerobic performances in professional female canoe polo athletes. Journal of Strength and Conditioning Research 32, 2375-2382. |
Stevanovic V. B., Jelic M. B., Milanovic S. D., Filipovic S. R., Mladen J, Mikic M. J., Stojanovic M. D. M. (2019) Sport-Specific Warm-Up Attenuates Static Stretching- Induced Negative Effects on Vertical Jump but Not Neuromuscular Excitability in Basketball Players. Journal of Sports Science and Medicine 18, 282-289. |
|