Alghannam A.F., Ghaith M.M., Alhussain M.H. (2021) Regulation of Energy Substrate Metabolism in Endurance Exercise. International Journal of Environmental Research Public Health 18. |
Bai Y., Welk G.J., Nam Y.H., Lee J.A., Lee J.M., Kim Y., Meier N.F., Dixon P.M. (2016) Comparison of Consumer and Research Monitors under Semistructured Settings. Medicine & Science in Sports & Exercise 48, 151-158. |
Bergman B.C., Brooks G.A. (1999) Respiratory gas-exchange ratios during graded exercise in fed and fasted trained and untrained men. Journal of Applied Physiology (1985) 86, 479-487. |
Blair S.N., Hand G.A., Hill J.O. (2015) Energy balance: a crucial issue for exercise and sports medicine. British Journal of Sports Medicine 49, 970-971. |
Center P.R. (2020) . Energy sources and Fuel Wise. |
Chevance G., Golaszewski N.M., Tipton E., Hekler E.B., Buman M., Welk G.J., Patrick K., Godino J.G. (2022) Accuracy and Precision of Energy Expenditure, Heart Rate, and Steps Measured by Combined-Sensing Fitbits Against Reference Measures: Systematic Review and Meta-analysis. Journal of Medical Internet Research Mhealth Uhealth 10, e35626. |
Chinoy E.D., Cuellar J.A., Huwa K.E., Jameson J.T., Watson C.H., Bessman S.C., Hirsch D.A., Cooper A.D., Drummond S.P.A., Markwald R.R. (2021) Performance of seven consumer sleep-tracking devices compared with polysomnography. Nature and Science of Sleep 44. |
Chinoy E.D., Cuellar J.A., Jameson J.T., Markwald R.R. (2022) Performance of Four Commercial Wearable Sleep-Tracking Devices Tested Under Unrestricted Conditions at Home in Healthy Young Adults. Nature of Science of Sleep 14, 493-516. |
Dooley E.E., Golaszewski N.M., Bartholomew J.B. (2017) Estimating Accuracy at Exercise Intensities: A Comparative Study of Self-Monitoring Heart Rate and Physical Activity Wearable Devices. Journal of Medical Internet Research Mhealth Uhealth 5, 34. |
Düking P., Giessing L., Frenkel M.O., Koehler K., Holmberg H.C., Sperlich B. (2020) Wrist-Worn Wearables for Monitoring Heart Rate and Energy Expenditure While Sitting or Performing Light-to-Vigorous Physical Activity: Validation Study. Journal of Medical Internet Research Mhealth Uhealth 8, e16716. |
Evenson K.R., Goto M.M., Furberg R.D. (2015) Systematic review of the validity and reliability of consumer-wearable activity trackers. International Journal of Behavioral Nutrition and Physical Activity 12, 159. |
Friedl K.E. (2018) Military applications of soldier physiological monitoring. Journal of Science of Medicine in Sport 21, 1147-1153. |
Goodie J.L. (2000) Validation of the Polar Heart Rate Monitor for Assessing Heart Rate During Physical and Mental Stress. Journal of Psychophysiology 14, 159-164. |
Gordt K., Gerhardy T., Najafi B., Schwenk M. (2018) Effects of Wearable Sensor-Based Balance and Gait Training on Balance, Gait, and Functional Performance in Healthy and Patient Populations: A Systematic Review and Meta-Analysis of Randomized Controlled Trials. Gerontology 64, 74-89. |
Hajj-Boutros G., Landry-Duval M.A., Comtois A.S., Gouspillou G., Karelis A.D. (2023) Wrist-worn devices for the measurement of heart rate and energy expenditure: A validation study for the Apple Watch 6, Polar Vantage V and Fitbit Sense. European Journal of Sport Science 23, 165-177. |
Hall C., Figueroa A., Fernhall B., Kanaley J.A. (2004) Energy expenditure of walking and running: comparison with prediction equations. Medicine & Science in Sports & Exercise 36, 2128-2134. |
Hellsten Y., Nyberg M. (2015) Cardiovascular Adaptations to Exercise Training. Comprehensive Physiology 6, 1-32. |
Hermand E., Cassirame J., Ennequin G., Hue O. (2019) Validation of a Photoplethysmographic Heart Rate Monitor: Polar OH1. Inernational Journal of Sports Medicine 40, 462-467. |
Holloszy J.O., Coyle E.F. (1984) Adaptations of skeletal muscle to endurance exercise and their metabolic consequences. Journal of Applied Physiology Respiratory Environmental Exercise Physiology 56, 831-838. |
Jeukendrup A.E., Wallis G.A. (2005) Measurement of substrate oxidation during exercise by means of gas exchange measurements. International Journal of Sports Medicine 26, 28-37. |
Kinnunen H., Häkkinen K., Schumann M., Karavirta L., Westerterp K.R., Kyröläinen H. (2019) Training-induced changes in daily energy expenditure: Methodological evaluation using wrist-worn accelerometer, heart rate monitor, and doubly labeled water technique. Plos One 14, e0219563. |
Koo T.K., Li M.Y. (2016) A Guideline of Selecting and Reporting Intraclass Correlation Coefficients for Reliability Research. Journal of Chiropractic Medicine 15, 155-163. |
Kraemer W.J., Ratamess N.A. (2005) Hormonal responses and adaptations to resistance exercise and training. Sports Medicine 35, 339-361. |
Kraemer W.J., Szivak T.K. (2012) Strength training for the warfighter. Journal of Strength & Conditioning Research 26, 107-118. |
Li R.T., Kling S.R., Salata M.J., Cupp S.A., Sheehan J., Voos J.E. (2016) Wearable Performance Devices in Sports Medicine. Sports Health 8, 74-78. |
Lynch B.M., Nguyen N.H., Moore M.M., Reeves M.M., Rosenberg D.E., Boyle T., Vallance J.K., Milton S., Friedenreich C.M., English D.R. (2019) A randomized controlled trial of a wearable technology-based intervention for increasing moderate to vigorous physical activity and reducing sedentary behavior in breast cancer survivors: The ACTIVATE Trial. Cancer 125, 2846-2855. |
Medicine, A.C.O.S. (2006) ACSM's advanced exercise physiology. Lippincott Williams & Wilkins. |
O'Driscoll R., Turicchi J., Beaulieu K., Scott S., Matu J., Deighton K., Finlayson G., Stubbs J. (2020) How well do activity monitors estimate energy expenditure? A systematic review and meta-analysis of the validity of current technologies. British Journal of Sports Medicine 54, 332-340. |
Rothschild J.A., Kilding A.E., Stewart T., Plews D.J. (2022) Factors Influencing Substrate Oxidation During Submaximal Cycling: A Modelling Analysis. Sports Medicine 52, 2775-2795. |
Rumo M., Amft O., Troster G., Mader U. (2011) A stepwise validation of a wearable system for estimating energy expenditure in field-based research. Physiological Measurement 32, 1983-2001. |
Seshadri D.R., Li R.T., Voos J.E., Rowbottom J.R., Alfes C.M., Zorman C.A., Drummond C.K. (2019) Wearable sensors for monitoring the internal and external workload of the athlete. NPJ Digital Medicine 2, 71. |
Shumate T., Link M., Furness J., Kemp-Smith K., Simas V., Climstein M. (2021) Validity of the Polar Vantage M watch when measuring heart rate at different exercise intensities. PeerJ 9, e10893. |
Siddall A.G., Powell S.D., Needham-Beck S.C., Edwards V.C., Thompson J.E.S., Kefyalew S.S., Singh P.A., Orford E.R., Venables M.C., Jackson S., Greeves J.P., Blacker S.D., Myers S.D. (2019) Validity of energy expenditure estimation methods during 10 days of military training. Scandinavian Journal of Medicine & Science in Sports 29, 1313-1321. |
Smith M., Withnall R., Anastasova S., Gil-Rosa B., Blackadder-Coward J., Taylor N. (2023) Developing a multimodal biosensor for remote physiological monitoring. BMJ Military Health 169, 170-175. |
Strain T., Wijndaele K., Dempsey P.C., Sharp S.J., Pearce M., Jeon J., Lindsay T., Wareham N., Brage S. (2020) Wearable-device-measured physical activity and future health risk. Nature Medicine 26, 1385-1391. |
Szivak T.K., Kraemer W.J. (2015) Physiological Readiness and Resilience: Pillars of Military Preparedness. Journal of Strength & Conditioning Research 29, 34-39. |
Vigneshvar S., Sudhakumari C.C., Senthilkumaran B., Prakash H. (2016) Recent Advances in Biosensor Technology for Potential Applications - An Overview. Frontiers in Bioengineering and Biotechnology 4, 11. |
White T., Westgate K., Hollidge S., Venables M., Olivier P., Wareham N., Brage S. (2019) Estimating energy expenditure from wrist and thigh accelerometry in free-living adults: a doubly labelled water study. International Journal of Obesity (London) 43, 2333-2342. |
|