Abbott R.A., Davies P.S. (2004) Habitual physical activity and physical activity intensity: their relation to body composition in 5.0-10.5-y-old children. European Journal of Clinical Nutrition 58, 285-291. |
Armstrong N. (1998) Young people’s physical activity patterns as assessed by heart rate. Journal of Sports Sciences 16, S9-S16. |
Armstrong N., Balding J., Gentle P, Kirby B. (1990) Patterns of physical activity among 11-16 year old British children. British Medical Journa 301, 203-205. |
Armstrong N., Bray S. (1990) Primary schoolchildren’s physical activity patterns during autumn and summer. Bulletin of Physical Education 26, 23-26. |
Armstrong N., Bray S. (1991) Physical activity patterns defined by continuous heart rate monitoring. Archives of Disease in Childhood 66, 245-247. |
Armstrong N., Welsman J.R. (2006) The physical activity patterns of European youth with reference to methods of assessment. Sports Medicine 36, 1067-1086. |
Armstrong N., Welsman J.R., Kirby B.J.. (2000) Longitudinal changes in 11-13-year-olds’ physical activity. Acta Paediatrica 89, 775-780. |
Bailey R.C., Olson J., Pepper S.L., Porszasz J., Barstow T.J., Cooper D.M. (1995) The level and tempo of children’s physical activities: an observational study. Medicine and Science in Sports and Exercise 27, 1033-1041. |
Bassett D.R., Ainsworth B.E., Leggett S.R., Matian C.A., Main J.A., Hunter D.C., Dunacan G.E. (1996) Accuracy of five electronic pedometers for measuring distance walked. Medicine and Science in Sports and Exercise 28, 1071-1077. |
Baquet G., Stratton G., Van Praagh E., Berthoin S. (2007) Improving physical activity assessment in children with high-frequency accelerometry monitoring: a methodological issue. Preventive Medicine 44, 143-147. |
Berman N., Bailey R., Barstow T.J., Cooper D.M. (1998) Spectral and bout detection analysis of physical activity patterns in healthy, prepubertal boys and girls. American Journal of Human Biology 10, 289-297. |
Biddle S., Mitchell J., Armstrong N. (1991) The assessment of physical activity in children: a comparison of continuous heart rate monitoring, self-report and interview techniques. British Journal of Physical Education Research 10, 4-8. |
Brage S. Brage, N. Franks P.W., Ekelund U. Wong, M. Anderson L.B., Froberg K., Wareham N.J. (2004) Branched equation modelling of simultaneous accelerometry and heart rate monitoring improves estimate of directly measured physical activity energy expenditure. Journal of Applied Physiology 96, 343-351. |
Brage S., Wedderkopp N., Anderson L.B., Froberg K. (2003a) Influence of step frequency on movement intensity predictions with the CSA accelerometer: A field validation study in children. Pediatric Exercise Science 15, 277-287. |
Brage S., Wedderkopp N., Franks P.W., Anderson L.B., Froberg K. (2003b) Reexamination of validity and reliability of the CSA monitor in walking and running. Medicine and Science in Sports and Exercise 35, 1447-1454. |
Chan C.B., Ryan D.A.J., Tudor-Locke C. (2004) Health benefits of a pedometer-based physical activity intervention in sedentary workers. Preventive Medicine 39, 1215-1222. |
Chen K.Y., Bassett D.R. (2005) The technology of accelerometry-based activity monitors: Current and future. Medicine and Science in Sports and Exercise 37, S490-S500. |
Chu E.Y.W., Hu Y., Tsang A.M.C., McManus A.M. (2005) The influence of the distinguished pattern of locomotion to fitness and fatness in prepubertal children. Children and Exercise XXII , -. |
Corder K, Brage S., Wareham N.J., Ekelund U.. (2005) Comparison of PAEE from combined and separate heart rate and movement models in children. Medicine and Science in Sports and Exercise 37, 1761-1767. |
Crouter S.E., Clowers K.G., Bassett Jr D.R. (2006) A novel method for using accelerometer data to predict energy expenditure. Journal of Applied Physiology 100, 1324-1331. |
Duncan J.S., Schofield G., Duncan E.K. (2006) Pedometer-determined physical activity and body composition in New Zealand children. Medicine and Science in Sports and Exercise 38, 1402-1409. |
Ekelund U., Sardinha L.B., Anderssen S.A., Harro M., Franks P.W., Brage S., Cooper A.R., Anderson L.B., Riddoch C., Froberg K. (2004) Associations between objectively assessed physical activity and indicators of body fatness in 9- to 10-y-old European children: a population-based study from 4 distinct regions in Europe (the European Youth Heart Study). American Journal of Clinical Nutrition 80, 584-590. |
Eisennman J.C., Strath S.J., Shadrick D., Rigsby P., Hirsch N., Jacobson L. (2004) Validity of uniaxial accelerometry during activities of daily living in children. European Journal of Applied Physiology 91, 259-263. |
Eston R.G., Rowlands A.V., Ingledew D.K. (1998) Validity of heart rate, pedometry and accelerometry for predicting the energy cost of children’s activities. Journal of Applied Physiology 84, 362-371. |
Freedson P.S., Melanson E., Sirad J. (1997) Calibration of the Computer Science and Applications, Inc. accelerometer. Medicine and Science in Sports and Exercise 29, S45-. |
Freedson P.S., Pober D., Janz K.F. (2005) Calibration of accelerometer output for children. Medicine and Science in Sports and Exercise 37, S523-S530. |
Gayle R., Montoye H.J., Philpot J. (1977) Accuracy of pedometers for measuring distance walked. Research Quarterly for Exercise and Sport 48, 632-636. |
Gibbs-Smith C.. (1978) The Inventions of Leonardo da Vinci. London. Phaidon Press Ltd. 31-43. |
Gleitman H.. (1996) Basic Psychology. New York. Norton and Company. |
Goldfield G.S., Kalakanis L.E., Ernst M.M., Epstein L.H. (2000) Open-loop feedback to increase physical activity in obese children. International Journal of Obesity and Related Metabolic Disorders 24, 888-892. |
Goldfield G.S., Mallory R., Parker T., Cunningham T., Legg C., Lumb A., Parker K., Prud'homme D., Gaboury I, Adamo K.B. (2006) Effects of open-loop feedback on physical activity and television viewing in overweight and obese children: a randomized, controlled trial. Pediatrics 118, e157-166. |
Gutin B., Yin Z., Humphries M.C., Barbeau P. (2005) Relations of moderate and vigorous physical activity to fitness and fatness in adolescents. American Journal of Clinical Nutrition 81, 746-750. |
Harro M., Riddoch C., Armstrong N. (2000) Paediatric Exercise science and Medicine. Physical activity. and van Mechelen, W. Oxford. Oxford University Press. |
Hasselstrøm H., Karlsson K.M., Hansen S.E., Grønfeldt V., Froberg K., Andersen L.B. (2007) Peripheral Bone Mineral Density and Different Intensities of Physical Activity in Children 6-8 Years Old: The Copenhagen School Child Intervention Study. Calcified Tissue International 80, 31-38. |
Heil D. (2006) Predicting activity energy expenditure using the Actical activity monitor. Research Quarterly for Exercise and Sport 77, 64-80. |
Janz K.F., Levy S.M., Burns T.L., Torner J.C., Willing M.C., Warren J.J. (2002) Fatness, physical activity and television viewing in children during the adiposity rebound period: The Iowa bone development study. Preventive Medicine 35, 563-571. |
Janz K.F., Golden J.C., Hansen J.R., Mahoney L.T. (1992) Heart rate monitoring of physical activity in children and adolescents: The Muscatine study. Pediatrics 89, 256-261. |
Kemper H.C.G., Verschuur R. (1977) Validity and reliability of pedometers in habitual activity research. European Journal of Applied Physiology 37, 71-82. |
Kilanowski C.K., Consalvi A.R., Epstein L.H. (1999) Validation of an electronic pedometer for measurement of physical activity in children. Pediatric Exercise Science 11, 63-68. |
Le Masurier G.C., Corbin C.B. (2006) Step counts among middle school students vary with aerobic fitness level. Research Quarterly for Exercise and Sport 77, 14-22. |
Livingstone M.B.E., Coward A.W., Prentice A.M., Davis P.S., Strain J.J., McKenna P.G., Mahoney C.A., White J.A., Stewart C.M., Kerr M.J. (1992) Daily energy expenditure in free-living children: comparison of heart rate monitoring with the doubly labelled water method. American Journal of Clinical Nutrition 56, 343-352. |
Louie L.R.G., Eston A.V., Rowlands K.K., Tong D.K., Ingledew H.F. Fu.. (1999) Validity of heart rate, pedometry, and accelerometry for estimating the energy cost of activity in Chinese boys. Pediatric Exercise Science 11, 229-239. |
McManus A., Armstrong N., Ring FJ.. (1995) Children in Sport. Patterns of physical activity among primary schoolchildren. Bath. University Press. |
McMurray R.G., Baggett C.D., Harrell J.S., Pennell M.L., Bangdiwala S.I. (2004) Feasibility of the Tritrac R3D accelerometer to estimate energy expenditure in youth. Pediatric Exercise Science 16, 219-230. |
Nilsson A., Ekelund U., Yngve A., Sjostrom M. (2002) Assessing physical activity among children with accelerometers using different time sampling intervals and placements. Pediatric Exercise Science 14, 87-96. |
Ott A.E., Pate R.R., Trost S.G., Ward D.S., Saunders R (2000) The use of uniaxial and triaxial accelerometers to measure children’s free play physical activity. Pediatric Exercise Science 12, 360-370. |
Ozdoba R., Corbin C., Le Masurier G. (2004) Does reactivity exist in children when measuring activity levels with unsealed pedometers. Pediatric Exercise Science 16, 158-166. |
Parfitt G., Eston R.G. (2005) The relationship between children’s habitual activity level and psychological well-being. Acta Paediatrica 94, 1791-1797. |
Pfeiffer K.A., McIver K.L., Dowda M., Almeida M.J., Pate R.R. (2006) Validation and calibration of the Actical accelerometer in preschool children. Medicine and Science in Sports and Exercise 38, 152-157. |
Pober D.M., Staudenmayer J., Raphael C., Freedson P.S. (2006) Development of novel techniques to classify physical activity mode using accelerometers. Medicine and Science in Sports and Exercise 38, 1626-1634. |
Puyau M.R., Adolph A.L., Vohra F.A., Butte N.F. (2002) Validation and calibration of physical activity monitors in children. Obesity Research 10, 150-157. |
Puyau M.R., Adolph A.L., Vohra F.A., Zakeri I., Butte N.F. (2004) Prediction of activity energy expenditure using accelerometers in children. Medicine and Science in Sports and Exercise 36, 1625-1631. |
Riddoch C.J., Boreham C.A.G. (1995) The health-related physical activity of children. Sports Medicine 19, 86-102. |
Roemmich J.N., Gurgol C.M., Epstein L.H. (2004) Open-loop feedback increases physical activity of youth. Medicine Science in Sports and Exercise 36, 668-673. |
Rowlands A.V. (2007) Accelerometer assessment of physical activity in children: an update. Pediatric Exercise Science 19, 252-266. |
Rowlands A.V., Eston R.G., Reilly T. (2001) Field measures of assessing physical activity and energy balance. Exercise Physiology and Kinanthropometry Laboratory Manual: Tests, Procedures and Data 1, 151-170. |
Rowlands A.V., Eston R.G. (2005) Comparison of accelerometer and pedometer measuresof physical activity in boys and girls, aged 8-10 yrs. Research Quarterly for Exercise and Sport 76, 251-257. |
Rowlands A.V., Eston R.G., Ingledew D.K. (1997) Measurement of physical activity in children with particular reference to the use of heart rate and pedometry. Sports Medicine 24, 258-272. |
Rowlands A.V., Eston R.G., Ingledew D.K. (1999) The relationship between activity levels, aerobic fitness, and body fat in 8- to 10-yr-old children. Journal of Applied Physiology 86, 1428-1435. |
Rowlands A.V., Eston R.G., Powell S.M. (2006) Total physical activity, activity intensity and body fat in 8 to 11 year old boys and girls. Journal of Exercise Science and Fitness 4, 97-103. |
Rowlands A.V., Ingledew D.K., Eston R.G. (2000) The effect of type of activity measure on the relationship between body fatness and habitual physical activity in children: A meta-analysis. Annals of Human Biology 27, 479-497. |
Rowlands A.V., Powell S.M., Eston R.G., Ingledew D.K. (2002) Relationship between bone mass, objectively measured physical activity and calcium intake in 8-11 year old children. Pediatric Exercise Science 14, 358-368. |
Rowlands A.V., Powell S.M., Humphries R., Eston R.G. (2006) The effect of accelerometer epoch on physical activity output measures. Journal of Exercise Science and Fitness 4, 51-57. |
Rowlands A.V., Stone M.R., Eston R.G. (2007) Influence of speed & step frequency during walking & running on motion sensor output. Medicine and Science in Sports and Exercise 39, 716-727. |
Rowlands A.V., Thomas P.W.M., Eston R.G., Topping R. (2004) Validation of the RT3 triaxial accelerometer for the assessment of physical activity. Medicine and Science in Sports and Exercise 36, 518-524. |
Saris W.H.M., Binkhorst R.A. (1977) The use of pedometer and actometer in studying daily physical activity in man. Part I. Reliability of pedometer and actometer. European Journal of Applied Physiology 37, 219-228. |
Schneider P.L., Crouter S.E., Bassett D.R. (2004) Pedometer measures of free-living physical activity: comparison of 13 models. Medicine and Science in Sports and Exercise 36, 331-335. |
Sequeira M.M., Rickenbach M., Wietlisbach V., Tullen B., Schutz Y. (1995) Physical activity assessment using a pedometer and its comparison with a questionnaire in a large population survey. American Journal of Epidemiology 142, 989-999. |
Treuth M.S., Schmitz K., Catellier D.J., McMurray R.G., McMurray D.M., Almeida M.J., Going S., Norman J.E., Pate R. (2004) Defining accelerometer thresholds for activity intensities in adolescent girls. Medicine and Science in Sports and Exercise 36, 1259-1266. |
Trost S.G., Pate R.R., Sallis J.F., Freedson P.S., Taylor W.C., Dowda M., Sirad J. (2002) Age and gender differences in objectively measured physical activity in youth. Medicine and Science in Sports and Exercise 34, 350-355. |
Trost S.G., McIver K.L., Pate R.R. (2005) Conducting accelerometer-based activity assessments in field-based research. Medicine and Science in Sports and Exercise 37, S531-. |
Trost S.G., Ward S.S., Moorehead S.M., Watson P.D., Riner W., Burke J.R. (1998) Validity of the computer science and applications (CSA) activity monitor in children. Medicine and Science in Sports and Exercise 30, 629-633. |
Tudor-Locke C., Bell R.C., Myers A.M., Harris S.B., Ecclestone S.A., Lauson N., Rodger N.W. (2004) Controlled outcome evaluation of the First Step Program: a daily physical activity intervention for individuals with type II diabetes. International Journal of Obesity and Related Metabolic Disorders 28, 113-119. |
Tudor-Locke C., Sisson S.B., Collova T., Lee S.M., Swan P.D. (2005) Pedometer-determined step guidelines for classifying walking intensity in a young ostensibly healthy population. Canadian Journal of Applied Physiology 30, 666-676. |
Tudor-Locke C., Sisson S.B., Lee S.M., Craig C.L., Plotnikoff R.C., Bauman A. (2006) Evaluation of quality of commercial pedometers. Canadian Journal of Public Health 97, S10-S15. |
Vincent S., Pangrazi R.P. (2002) Does reactivity exist in children when measuring activity level with pedometers. Pediatric Exercise Science 14, 56-63. |
Washburn R., Chin M.K., Montoye H.J. (1980) Accuracy of pedometer in walking and running. Research Quarterly for Exercise and Sport 51, 695-702. |
Welk G.J., Corbin C.B., Dale D. (2000) Measurement issues in the assessment of -physical activity in children. Research Quarterly for Exercise and Sport 71, 59-73. |
Welk G.J. (2005) Principles of design and analyses for the calibration of accelerometry-based activity monitors. Medicine and Science in Sports and Exercise 37, S501-511. |
Welsman J.R., Armstrong N., Armstrong N., Kirby B.J., Welsman J.R. (1997) Children and Exercise XIX: promoting health and well-being. Physical activity patterns of 5 to 11-year-old children. London. E & FN Spon. |
Welsman J.R., Armstrong N. (1998) Physical activity patterns of 5-to-7-year-old children and their mothers. European Journal of Physical Education 3, 145-155. |
Welsman J.R., Armstrong N. (2000) Physical activity patterns in secondary schoolchildren. European Journal of Physical Education 5, 147-157. |
|