Limited data are available on the physiological status of elite female Paralympic athletes and more importantly the longitudinal training effects. Although no published data on female wheelchair tennis players exists, it was felt that improvements in body composition could be made and the suggestion made to the athlete was to aim to reduce her body fat through healthy eating and increased volume of aerobic training. With the consent of the athlete, the data was referred to the team nutritionist in order to advise on dietary interventions. As the skinfold values declined over the period of support with a notable 2.9 kg reduction in body mass, it can be suggested that the multidisciplinary approach between physiology and nutrition was deemed to be effective. As the lung function and resting blood pressure for this athlete was within the normal range prior to each test no interventions or referrals were made. Given the demands of international wheelchair tennis, and the format of tournaments it can be argued that cardiorespiratory fitness is an important component for success at the international level. Furthermore it has been suggested that improvements in peak aerobic capacity can greatly enhance quality of life in persons with SCI in relation to activities of daily life, by increasing physical capacity (Janssen et al., 1994). As maximum aerobic capacity is considered by some to be the ‘gold standard’ measure of this component of fitness (Saltin and Astrand, 1967) it was decided to incorporate this into the test battery. Moreover, the ability to clear lactic acid formed in the muscle as a result of anaerobic metabolism is a fundamental component of ‘functional’ endurance (Weltman, 1995). As such, profiling the blood lactate and heart rate response to incremental exercise allows for the estimation of training zones and is a recommended protocol for exercise testing involving individuals with SCI (Figoni, 1997). As one of the aims of the support process was to prescribe recommendations for training it was decided that such a test would provide the information on which to base these recommendations. Furthermore, adaptations to training such as increased lactate clearance rates and/or decreased production of lactate acid (Weltman et al., 1992) and improved efficiency of wheelchair propulsion (Figoni, 1997) could be of potential benefit in terms of wheelchair tennis performance, and could be monitored on subsequent visits. Lactate profile: The initial slight upward shift of the blood lactate concentration suggests a reduced endurance capacity (Weltman et al., 1992). This was likely due to a long lay-off during the Christmas period, coinciding with the end of the wheelchair tennis season. Upon returning to the laboratory in July 2004, the athlete’s profile was back to a similar level as in Jan-03, with a lower production rate at the higher exercise intensities and a marked improvement in pushing economy as demonstrated by lower oxygen uptake values. The athlete was prescribed three sessions a week of steady pushing at a heart rate intensity of 130-140 beats·min-1 and it was suggested that these sessions should last 20-30 min. The athlete had access to a personal fitness coach and therefore, with the athlete’s consent this individual was contacted and sent a copy of the report. This athlete also received specific support with this area during squad training camps. Peak aerobic capacity: It has been suggested that absolute maximal oxygen uptake peaks at about 15 years of age in sedentary female, and reductions are seen thereafter (Krahenbuhl et al., 1985). Unfortunately there is no longitudinal data available in the SCI population to support this claim. The highest peak aerobic capacity of 39.5 ml/kg/min for this athlete compares well to previously reported female values of 33.7 ml·kg-1·min-1 (Schmid et al., 1998). However, typically peak oxygen uptake tends to be expressed in relative terms due to the nature of the exercising musculature (Janssen and Hopman, 2005). Hence this is when fluctuations can be observed which may quite likely be due to the loss in body mass and maybe reduced muscle mass. Either way it was felt that this particular athlete’s aerobic capacity could be developed further. Consequently, interval training was prescribed involving high intensity repetitions of 4 min duration. Anaerobic capacity: The athlete’s initial assessment in January (2003) revealed a 17% drop in peak speed across the ten sprints (Table 1). Previous unpublished work with elite wheelchair basketball players has demonstrated that athletes of a similar disability were capable of maintaining repetitive sprint efforts of approximately 10%. The aim was therefore to improve this athlete’s anaerobic capacity. Therefore, a ‘fan drill’ was developed in order to address this issue and the athlete and coach were encouraged to incorporate this type of work into training sessions. Briefly this involved a series of repetitive sprints (25-30 sec duration) performed on court that were repeated up to four times. Fitness sessions at training camps with this athlete also focused on this area. As a result of this training, the fatigue index over the course of the study improved from 17% to 9%. However, the January-04 fatigue index of 8% may have also been due to the notable reduction in top speed on that test day. Thermoregulation and cooling interventions: The disruption of autonomic nervous system function resulting from injury to the spinal cord means that individuals with SCI have impaired thermoregulatory control (Hagobian et al., 2004; Price, 2006). This problem arises as a result of interrupted afferent and efferent input to and from the hypothalamus concerning skin temperature, sweating and vasodilation below the level of injury (Chu and Burnham, 1995). This leads to reduced sweating capacity (Sawka et al., 1989) and limited control of blood flow distal to the lesion (Theisen et al., 2000) which can compromise sporting performance and put individuals with SCI at high risk of hyperthermia. Various cooling strategies have been shown to have a positive impact on performance as well as reduce thermal load and time to exhaustion in the heat (Marino, 2002). However few studies have investigated this in a SCI population and strategies that could be used during match-play situations. One such study demonstrated that the use of an ice vest as a pre-cooling strategy significantly reduced thermal strain in individuals with SCI (Webborn et al., 2005). Therefore it was decided adopt a similar strategy but to also incorporate head and neck cooling during exercise in order to attempt to prolong the effects of pre-cooling. The results of this intervention for this particular athlete were encouraging with cooling resulting in a lowered heart rate and mean peak sprinting speeds during a simulated wheelchair tennis protocol being maintained over a 1 hour duration compared to a control condition (Figure’s 4 and Figure 5). The change in Tau from baseline indicated a trend whereby CON was consistently higher than INT after the first 18-min of exercise. The combined head and neck cooling strategy employed during the INT condition helped to slow the rise in Tau compared to CON towards the latter stages of the exercise. Moreover, these results suggested that the neck-band and cap strongly influenced how hot the athlete was feeling and appeared to have an impact on the amount of fluids drunk. Consequently, a fluid replacement strategy was put in place and a similar cooling strategy was successfully employed at the Paralympic Games. For more information on this topic area we direct the reader to Goosey-Tolfrey et al., 2008a. The results from this case study clearly demonstrate that significant adaptations to training occurred during the two year support period and in many cases these adaptations were at their peak for this particular athlete, leading into the 2004 Paralympic Games. Furthermore, the cooling strategy and hydration strategy that was developed appeared to have a significant impact on this athlete’s performance. Although the athlete did not medal at the Games, they achieved the goal of reaching the quarter final stages of the singles competition, finally losing to the World No.3 and eventual bronze medallist. In doing so, the player recorded a victory over an opponent ranked within the Top 5 in the world and soon became the new British No.1. Her world singles ranking also improved from outside the top 30 in January 2002 to 12 in 2004. Additionally, the coaching staff were extremely satisfied with the impact of the support provision. Given that skill is arguably the most important factor to success in international wheelchair tennis, it is difficult to appreciate the extent to which this work had an impact on tennis performance. However as the athlete was in peak physical condition (according to the tests that were conducted), and subjectively one of the best conditioned players in the world, fitness could not be used as an excuse in the event of poor performance. |