Letter to editor - (2009)08, 491 - 492 |
Comparison of metabolic gas analysis between a standard laboratory system and a portable device |
Leah C. Stroud1, Alan H. Feiveson2, Robert Ploutz-Snyder3, John K. De Witt1, Meghan E. Everett4, Michael L. Gernhardt2 |
Dear Editor-in-chief |
The recent development of portable metabolic gas analysis systems gives scientists the capability of measuring physiological data, including oxygen consumption, associated with multi-directional movements in the field. However, careful consideration is necessary when comparing data from two metabolic systems (Jakovljevic et al., Ten experienced runners (6M: 30.2 ± 2.8 years, 1.83 ± 0.05 m, 81.8 ± 7.1 kg; 4F: 27.8 ± 2.4 years, 1.66 ± 0.03 m, 57.7 ± 4.4 kg; mean ± SD) completed the study. Each subject walked and ran on a standard laboratory treadmill while metabolic gases were measured using either the T2400 or the K4b2 in a balanced- random order. Test sessions were separated by at least 48 hours and were completed within a 12-day period (5.3 ± 4.2 days) to minimize the potential effects of fatigue and altered fitness level, respectively. After donning a heart rate monitor (Polar Electro Oy, Model 6029, Kempele, Finland) and metabolic equipment, subjects began the testing protocol with a five-minute standing baseline period. Once the baseline period was completed, subjects walked on a level treadmill at 0. 89 m·s-1 for the first three-minute stage. Speed was increased 0.45 m·s-1 every three minutes until the subject’s heart rate reached 85% of a previously measured peak heart rate (if measured within one year) or an age-predicted maximum heart rate (220 beats·min-1 - age). All ten subjects completed speeds up to 2.24 m·s-1, nine subjects completed the 2.68 m·s-1 speed, and six subjects completed the 3.13 m·s-1 speed. VO2, RER, and VE from the last minute of each stage were averaged and used for subsequent analysis. Bland-Altman plots (see The measured relative VO2 was similar for the two devices at rest (difference values lie between ILOA when relative VO2 is low; see Panel A). However, as exercise intensity increased (positive slope of regression line), the K4b2 measurements increased relative to the T2400 measurements. The overall bias is indicated by the failure of the LOA to be centered at zero. A similar but not as severe pattern for VE is indicated in Panel B, where although the slope is positive (p < 0.001), it is fairly small in magnitude. In addition, although the overall bias was smaller for VE than for relative VO2 (the LOA were more closely centered at zero), the effect was not as strong (the slope was less severe; therefore, fewer values were outside the idealized LOA). Panel C shows good agreement between devices for RER considering the range of RER measurements made by either device. The main findings were that the K4b2 did not duplicate T2400 VO2 or VE measurements well, especially at higher levels of exercise. The K4b2 agreed better with the T2400 when measuring VE, but a bias exists that increases with exercise intensity (speed). The K4b2 seemed to give RER results similar to those of the T2400. In view of these results, we do not recommend comparing relative VO2 and VE between the K4b2 and the T2400 during exercise. However, although it appears that the K4b2 and the T2400 are not directly comparable, the K4b2 allows metabolic measurements to be made during field tasks, which may not be possible when traditional metabolic gas analysis systems such as the T2400 are used. In this case, because the K4b2 has been shown to give consistent readings (Duffield et al., |