Letter to editor - (2010)09, 524 - 526 |
A Load-Velocity Relationship for Men and Women in Overhead Throwing Performance |
Mário C. Marques1,2, Daniel A. Marinho1,2, Roland van den Tillaar1,3 |
Dear Editor-in-Chief |
TIn many movements, resistance (load) and velocity are inversely related to each other (Schilling et al., For throwing performance, several studies showed that by increasing ball mass ball velocity at release decreases (Kunz, Overhead throwing is used in soccer throw-in, in resistance training for throwing events and also in other sports training. van den Tillaar and Marques, Therefore, the aim of this study was to investigate the load-velocity relationship in overhead throwing with different ball mass varying from 0.45kg to 5kg for both men and women. It was hypothesized that the load-velocity relationship was hyperbolic and not linear as found in earlier studies (Kunz, Eighty (56 men and 24 women) university students of sport science (age 21.7 ± 2.1 y, mass 71.5 ± 11 kg, height 1.75 ± 0.09 m) participated in this study. Before participating in this study, the subjects were fully informed about the protocol. Informed consent was obtained prior to all testing, in accordance with the recommendations of local ethical committee. The present study used a cross-sectional experimental design to examine a load-velocity relationship in overhead throwing for men and women. The load-velocity relationship was established by using four different weighted balls varying from 0.45kg to 5kg. Two-handed overhead throwing was used, since most subjects had some experience with this specific throwing technique with medicine and soccer balls. In addition, two-handed medicine ball throwing mimics the same throwing movements (as soccer) with only a weight difference. According to van den Tillaar and Marques, Before the test the participants practiced in throwing with the different weighted balls. This activity was undertaken to avoid a learning effect. Four balls with different mass were used in the test: a soccer ball (circumference 0.68m; regular mass 0.45kg), a 1kg medicine ball (circumference 0.72m), a 3kg medicine ball (circumference 0.78m) and a 5kg medicine ball (circumference 0.85m). After a general warm-up of 10 minutes, which included of throwing with different weighted balls to warm up the shoulders, throwing with the different ball was tested. The same procedure was used as in the study of van den Tillaar and Marques, Three approved attempts were made with each ball with one-minute rest between each attempt. The sequence of ball type was randomized for each participant to ensure that fatigue or learning effects did not alter the performance. The maximal velocity with each ball was determined using a Doppler radar gun (Sports Radar 3300, Sports Electronics Inc.), with ± 0.03m/s accuracy within a field of 10 degrees from the gun. The radar gun was located 1m behind the participant at ball height during the throw. Only the best attempts with each ball were used for further analysis. To assess a relationship of ball mass on velocity of the ball in men and women curve estimation was performed in (SPSS 14.0) where a linear and a logarithmic model was used. It was found that the logarithmic model for both men and women fitted the data much better than the linear model ( The aim of this study was to investigate the relationship between load and velocity in overhead throwing in both men and women. The results confirm earlier studies (Kunz, Although the load-velocity relationship of our study and isolated muscle contraction may be similar, the systems and actions from which these performance curves arise are quite different (e.g., complexity of the movement, the number of factors like motivation, muscle activity levels, muscle synergies and coordination and system elements like nervous system, various muscles and joints, that are involved). One should therefore take extreme care by interpreting the current load-velocity curve as being mainly determined by muscle properties (van Den Tillaar and Ettema, That the difference in ball velocity with the lighter balls (0.45kg) between men and women was bigger than with the heavier medicine ball (5kg) and thereby indicating a different load- velocity curve can be explained by throwing experience. Toyoshima and Mihashita ( We only used 4 different ball masses to base the relationship upon. To get a more accurate relationship it would be better to have more points i.e. throwing with several different ball masses. However, we wanted to avoid that fatigue would influence the results. When applying the model to men and women we found that by increasing ball mass the difference in ball velocity between genders decreases. Differences in hormonal, enzymatic and neurological factors, limb lengths, coordination patterns, muscle mass and the fact that women tend to have a lower proportion of their lean tissue distributed in the upper body could explain the greater gender-differences in upper body strength (Abe et al., A practical application that can be suggested based upon the findings of our study is that women can train relatively slightly heavier when training for velocity because velocity doesn’t decline at the same rate as throwing mass increases. In fact, the curve was less steep for women and may represent gender differences, for example, on mechanical throwing performance. It could be also suggested that the dominance in women of type I muscle fibers and a difference in the degree of inhibition in the nervous system may be related to the gender difference in throwing performance, special at higher velocities. Explosive strength is a fundamental aspect of many sports and has become an essential aspect of most training programs. The need for a quick and convenient method of measuring power is ongoing. Indeed, the classic force-velocity curve for isolated muscle seems to be applicable in throwing tasks with different loads, suggesting that some strength training programs can also be applied in these throwing tasks. However, in the current study no force output was measured to establish a force-velocity relationship for this throwing movement. Future studies should be designed to measure the force to get more information about the relation between force and velocity in these types of movements. |