Table 4. Results of all machine learning and deep learning models on both of our datasets of the best-performing model during the hyperparameter study. For all models, we report MAE, MSE, and RMSE of the respective 5-fold cross-validation. Best values are highlighted in bold.
Model Matches included Matches excluded
Mean
Absolute Error
Mean
Squared Error
Root Mean
Squared Error
Mean
Absolute Error
Mean
Squared Error
Root Mean
Squared Error
KNeighbors 1.29 (±0.02) 3.81 (±0.09) 1.95 (±0.02) 1.21 (±0.01) 3.5 (±0.04) 1.87 (±0.01)
Ridge 1.29 (±0.02) 3.81 (±0.09) 1.95 (±0.02) 1.21 (±0.01) 3.5 (±0.04) 1.87 (±0.01)
Lasso 2.5 (±0.01) 8.25 (±0.07) 2.87 (±0.01) 2.5 (±0.03) 8.25 (±0.15) 2.87 (±0.03)
ElasticNet 2.5 (±0.01) 8.25 (±0.07) 2.87 (V0.01) 2.5 (±0.03) 8.25 (±0.15) 2.87 (±0.03)
Decision Tree 1.7 (±0.04) 7.71 (±0.28) 2.78 (±0.05) 1.54 (±0.04) 6.85 (±0.25) 2.62 (±0.05)
ExtraTree 1.25 (±0.01) 3.05 (±0.05) 1.75 (±0.01) 1.15 (±0.03) 2.65 (±0.12) 1.63 (±0.04)
Random Forest 1.47 (±0.01) 3.52 (V0.06) 1.88 (±0.02) 1.37 (±0.02) 3.12 (±0.11) 1.77 (±0.03)
Gradient Boosting 2.36 (±0.01) 7.58 (±0.08) 2.75 (±0.02) 2.35 (±0.02) 7.54 (±0.12) 2.74 (±0.02)
AdaBoost 2.4 (±0.02) 7.65 (±0.08) 2.77 (±0.01) 2.39 (±0.03) 7.54 (±0.13) 2.75 (±0.02)
DL 1.21 (±0.01) 3.47 (±0.07) 1.86 (±0.01) 1.04 (±0.07) 2.70 (±0.23) 1.64 (±0.05)