This paper discusses the role of knee positioning and range-of- motion on the closed-stance forehand tennis swing. The analyses of tennis swing mechanics were performed using a computer model comprised of a full-body model of a human and an inertial model of a racket. The model was driven by subject forehand swings (16 female college-level subjects) recorded with a high-speed digital motion analysis system. The study discovered that both initial knee positioning and range-of-motion were positively related to racket velocity and characteristic of more skilled players. The direct effects of knee positioning and range-of-motion on racket movement are minimal, however there are several indirect biomechanical effects on the forehand motion such as movement of the body mass center, work of the knee, hip and back joints, and the angular range-of-motion of the hips and torso. Some of these indirect effects were related to racket velocity and characteristic of more skilled players. Factors that influenced knee positioning and range-of-motion include years of playing, amount of coaching, and body style. Efforts to both increase and restrict the knee movements of the subjects resulted in substantially lower racket velocities (and other detrimental biomechanical effects) implying that there may be optimal knee positions and range-of-motion for a given subject. The most skilled subject exhibited a high degree of consistency of knee positioning and range-of-motion. This subject adjusted for varying ball height through modified initial knee positioning while maintaining fairly constant ranges-of-motion. |