The objective of this study was to investigate the relationship between isometric GM torque and the degree of frontal plane pelvic drop during running. Twenty-one healthy, recreational runners (9 males, 12 females) who ran 8.05 km or more per week were obtained from a sample of convenience. GM maximal isometric torque was collected prior to the run. Subjects then ran on a treadmill for 30 minutes while bilateral three-dimensional pelvic kinematic data were collected for 10 seconds at each 2 minute increment. Left side pelvic drop showed a slight increase (effect size = 0.61); while, the right side pelvic drop remained stable (effect size = 0.18). Pearson’s Correlations showed no relationship between GM isometric torque and frontal plane pelvic drop for any of the data collection periods during the 30-minute run. These results suggest that isometric GM torque was a poor predictor of frontal plane pelvic drop. One should question whether a dynamic rather than static measure of GM strength would be more appropriate. Future research is needed to identify dynamic strength measures that would better predict biomechanical components of running gait. |