Research article - (2010)09, 572 - 579
The Relation Between Mild Leg-Length Inequality and Able-Bodied Gait Asymmetry
Matthew K. Seeley1,, Brian R. Umberger2, Jody L. Clasey3, Robert Shapiro3
1Department of Exercise Sciences, Brigham Young University,
2Department of Kinesiology, University of Massachusetts, Amherst
3Department of Kinesiology and Health Promotion, University of Kentucky, USA

Matthew K. Seeley
✉ 116B Richards Building, Brigham Young University, Provo, UT 84602, USA.
Email: matt_seeley@byu.edu
Received: 13-06-2010 -- Accepted: 17-08-2010
Published (online): 01-12-2010

ABSTRACT

The causes of able-bodied gait asymmetries are unclear. Mild (< 3 cm) leg-length inequality (LLI) may be one cause of these asymmetries; however, this idea has not been thoroughly investigated. The purpose of this study was to investigate the nature of the relationship between LLI and able-bodied gait asymmetries. We hypothesized that subjects (n = 26) with relatively large LLI, quantified radiographically, would display less symmetrical gait than subjects with relatively small LLI. Gait asymmetries for joint kinematics and joint kinetics were determined using standard gait analysis procedures. Symmetry coefficients were used to quantify bilateral gait symmetry for sagittal-plane hip, knee, and ankle joint angles, moments, and powers. A Pearson product-moment correlation coefficient (r) was used to evaluate the relationship between LLI and the aforementioned symmetry coefficients. Also, these symmetry coefficients were compared between subjects with relatively small LLI (LLI < 1 cm; n = 19) and relatively large LLI (LLI ≥ 1 cm; n = 7). Statistically significant relationships were observed between LLI and the symmetry coefficient for knee joint moment (r = -0.48) and power (r = -0.51), and ankle joint moment (r = -0.41) and power (r = -0.42). Similarly, subjects with relatively large LLI exhibited significantly lower symmetry coefficients for knee joint moment (p = 0.40) and power (p = 0.35), and ankle joint moment (p = 0.40) and power (p = 0.22) than subjects with relatively small LLI. Degree of bilateral symmetry for knee and ankle joint kinetics appears to be related to LLI in able- bodied gait. This finding supports the idea that LLI is one cause of able-bodied gait asymmetries. Other factors, however, are also likely to contribute to these gait asymmetries; these may include other morphological asymmetries as well as asymmetrical neuromuscular input to the lower limb muscles.

Key words: Leg length, gait, asymmetry, kinematics, kinetics

Key Points
  • Moderate negative relationships were observed between mild limb-length inequality and gait symmetry for knee and ankle moment and power.
  • Subjects with relatively large mild limb-length inequality (between 1.0 and 2.3 cm) exhibited significantly less symmetrical gait for knee and ankle joint moment and power than subjects with relatively small mild limb-length inequality (< 1 cm).
  • These results indicate that the degree of symmetry for knee and ankle joint kinetics appears to be related to mild limb-length inequality in able-bodied gait.
  • These results further our understanding of normal human walking and provide important background information for future studies on gait pathology associated with mild limb-length inequality.








Back
|
Full Text
|
PDF
|
Share