Research article - (2013)12, 761 - 775
Body Segment Inertial Parameters of elite swimmers Using DXA and indirect Methods
Marcel Rossi , Andrew Lyttle, Amar El-Sallam, Nat Benjanuvatra, Brian Blanksby
School of Sport Science, Health & Exercise Science, The University of Western Australia, Crawley, Australia

Marcel Rossi
✉ School of Sport Science, Health & Exercise Science, The University of Western Australia, 35 Stirling Hwy, Crawley WA 6009, Australia
Email: 20676873@student.uwa.edu.au
Received: 27-02-2013 -- Accepted: 14-11-2013
Published (online): 01-12-2013

ABSTRACT

As accurate body segment inertial parameters (BSIPs) are difficult to obtain in motion analysis, this study computed individual BSIPs from DXA scan images. Therefore, by co-registering areal density data with DXA grayscale image, the relationship between pixel color gradient and the mass within the pixel area could be established. Thus, one can calculate BSIPs, including segment mass, center of mass (COM) and moment of inertia about the sagittal axis (Ixx). This technique calculated whole body mass very accurately (%RMSE of < 1.5%) relatively to results of the generic DXA scanner software. The BSIPs of elite male and female swimmers, and young adult Caucasian males (n = 28), were computed using this DXA method and 5 other common indirect estimation methods. A 3D surface scan of each subject enabled mapping of key anthropometric variables required for the 5 indirect estimation methods. Mass, COM and Ixx were calculated for seven body segments (head, trunk, head + trunk, upper arm, forearm, thigh and shank). Between-group comparisons of BSIPs revealed that elite female swimmers had the lowest segment masses of the three groups (p < 0.05). Elite male swimmers recorded the greatest inertial parameters of the trunk and upper arms (p < 0.05). Using the DXA method as the criterion, the five indirect methods produced errors greater than 10% for at least one BSIP in all three populations. Therefore, caution is required when computing BSIPs for elite swimmers via these indirect methods, DXA accurately estimated BSIPs in the frontal plane.

Key words: Body segment inertial parameters, DXA, indirect estimation methods, swimming

Key Points
  • Elite swimmers have significantly different body segment inertial parameters than young adult Caucasian males.
  • The errors computed from indirect BSIP estimation methods are large regardless whether applied to elite swimmers or young adult Caucasian males.
  • No indirect estimation method consistently performed best.








Back
|
Full Text
|
PDF
|
Share