The aim of this study was to investigate the role of release parameter changes within individuals (intra-individual) on basketball shooting performance across both free throws and three-point shots, and identify whether any velocity dependence exists. Twelve male basketball players were recorded shooting seventy-five three-point shots (6.75 m) and fifty free throws (4.19 m). Ball release parameters were estimated by combining an analytic trajectory model including drag, a least squares estimator, and gradient-based release distance compensation. Intra-individual release velocity standard deviations (SD) were found to be significantly smaller across all distances ([0.05-0.13 m/s] when compared to statistics reported by other studies [0.2-0.8 m/s]). Despite an increase in lower body motion and a 24% increase in release velocity (p < 0.001) as shooting distance increased, no increases in intra-individual release velocity or angle SD were observed indicating velocity-dependent changes in release parameters were absent. Shooting performance was found to be strongly correlated to the release velocity SD (r = -0.96, p < 0.001, for three-point shots, and r = -0.88, p < 0.001, for free throws). Release angle SD (1.2 ± 0.24 deg, for three-point shots, and 1.3 ± 0.26 deg, for free throws) showed no increase with distance and unrelated to performance. These findings suggest that velocity-dependent factors have minimal contribution to shooting strategies and an individual’s ability to control release velocity at any distance is a primary factor in determining their shooting performance. |