Journal of Sports Science and Medicine
Journal of Sports Science and Medicine
ISSN: 1303 - 2968   
Ios-APP Journal of Sports Science and Medicine
Views
32967
Download
3086
from September 2014
 
©Journal of Sports Science and Medicine (2007) 06, 154 - 165

Review article
Biomechanical Characteristics and Determinants of Instep Soccer Kick
Eleftherios Kellis , Athanasios Katis
Author Information
Laboratory of Neuromuscular Control and Therapeutic Exercise, Department of Physical Education and Sports Sciences at Serres, Aristotle University of Thessaloniki, Greece.

Eleftherios Kellis
✉ TEFAA Serres, Serres, 62100 Greece
Email: ekellis@phed-sr.auth.gr
Publish Date
Received: 21-12-2006
Accepted: 14-02-2007
Published (online): 01-06-2007
 
 
ABSTRACT

Good kicking technique is an important aspect of a soccer player. Therefore, understanding the biomechanics of soccer kicking is particularly important for guiding and monitoring the training process. The purpose of this review was to examine latest research findings on biomechanics of soccer kick performance and identify weaknesses of present research which deserve further attention in the future. Being a multiarticular movement, soccer kick is characterised by a proximal-to-distal motion of the lower limb segments of the kicking leg. Angular velocity is maximized first by the thigh, then by the shank and finally by the foot. This is accomplished by segmental and joint movements in multiple planes. During backswing, the thigh decelerates mainly due to a motion-dependent moment from the shank and, to a lesser extent, by activation of hip muscles. In turn, forward acceleration of the shank is accomplished through knee extensor moment as well as a motion-dependent moment from the thigh. The final speed, path and spin of the ball largely depend on the quality of foot-ball contact. Powerful kicks are achieved through a high foot velocity and coefficient of restitution. Preliminary data indicate that accurate kicks are achieved through slower kicking motion and ball speed values.

Key words: Soccer, biomechanics, kicking, football, sports, technique analysis


           Key Points
  • Soccer kick is achieved through segmental and joint rotations in multiple planes and via the proximal-to-distal sequence of segmental angular velocities until ball impact. The quality of ball - foot impact and the mechanical behavior of the foot are also important determinants of the final speed, path and spin of the ball.
  • Ball speed values during the maximum instep kick range from 18 to 35 msec depending on various factors, such as skill level, age, approach angle and limb dominance.
  • The main bulk of biomechanics research examined the biomechanics of powerful kicks, mostly under laboratory conditions. A powerful kick is characterized by the achievement of maximal ball speed. However, maximal ball speed does not guarantee a successful kick: in each case, the ball must reach the target. As already explained, when the player is instructed to hit the ball accurately, joint and segment velocities are lower as opposed to a fast and powerful kick performance. It is therefore apparent that future research should focus on biomechanics of fast but accurate kicking.
 
 
Home Issues About Authors
Contact Current Editorial board Authors instructions
Email alerts In Press Mission For Reviewers
Archive Scope
Supplements Statistics
Most Read Articles
  Most Cited Articles
 
  
 
JSSM | Copyright 2001-2024 | All rights reserved. | LEGAL NOTICES | Publisher

It is forbidden the total or partial reproduction of this web site and the published materials, the treatment of its database, any kind of transition and for any means, either electronic, mechanic or other methods, without the previous written permission of the JSSM.

This work is licensed under a Creative Commons License Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.