Journal of Sports Science and Medicine
Journal of Sports Science and Medicine
ISSN: 1303 - 2968   
Ios-APP Journal of Sports Science and Medicine
Androit-APP Journal of Sports Science and Medicine
Views
6543
Download
135
from September 2014
 
©Journal of Sports Science and Medicine (2012) 11, 363 - 370

Review article
Evidence for a Non-Genomic Action of Testosterone in Skeletal Muscle Which may Improve Athletic Performance: Implications for the Female Athlete
Jessica R. Dent1, , Deborah K. Fletcher1, Michael R. McGuigan1, 2
Author Information
1 Sports Performance Research Institute New Zealand, School of Sport and Recreation, Auckland University of Technology, Auckland, New Zealand
2 School of Exercise and Health Sciences, Edith Cowan University, Perth, Australia

Jessica R. Dent
‚úČ Sports Performance Research Institute New Zealand, School of Sport and Recreation, Auckland University of Technology, Auckland, New Zealand
Email: jess.r.dent@gmail.com
Publish Date
Received: 11-05-2012
Accepted: 01-06-2012
Published (online): 01-09-2012
Share this article
 
 
ABSTRACT

This review will focus on the proposed second mode of testosterone action (now termed non-genomic) that appears to occur independently of the traditional transcriptional mechanism in mammalian skeletal muscle cells which may enhance skeletal muscle contractile properties. This mechanism of testosterone action differs from the traditional pathway, originating at the cell membrane, having a rapid onset of action, requiring second messengers to execute its effects and is insensitive to inhibitors of traditional androgen receptor action, transcription and protein synthesis. Importantly, unlike the traditional action of testosterone in skeletal muscle, this non-genomic pathway is shown to have a direct acute effect on calcium-dependent components important for the contractile process. The changes within the contractile apparatus may enhance the ability of the muscle to produce explosive power during athletic performance. Rapid increases in Inositol triphosphate mass and calcium release from the sarcoplasmic reticulum have been reported in rodent skeletal muscle cells, and a rapid androgen (dihydrotestosterone)-induced increase in peak force production has been recorded in intact rodent skeletal muscle fibre bundles while showing increases in the activity of the Ras/MAP/ERK mediated pathway. Because the non-genomic action of testosterone is enhanced during increases in exposure to testosterone and is acute in its action, implications for athletic performance are likely greater in females than males due to natural fluctuations in circulating testosterone levels during the female menstrual cycle, reproductive pathology, and changes induced by hormonal contraceptive methods. Research should be undertaken in humans to confirm a pathway for non-genomic testosterone action in human skeletal muscle. Specifically, relationships between testosterone fluctuations and physiological changes within skeletal muscle cells and whole muscle exercise performance need to be examined.

Key words: Calcium, fatigue, female, rapid, power, androgen.


           Key Points
  • Non-genomic calcium mediated events activated by testosterone have been identified in skeletal muscle cells.
  • The non-genomic action originates at the cell membrane, is rapid in onset and is directed by second messengers' calcium and IP.
  • A possible action of non-genomic testosterone may be the initiation of a more efficient contraction through the mobilisation of calcium from the SR resulting in greater force production or velocity of contraction in fast twitch fibres.
  • Physiologically, females with menstrual disorders that cause hyperandrogenism may have a performance advantage in events that require great force or power production.
 
 
Home Issues About Authors
Contact Current Editorial board Authors instructions
Email alerts In Press Mission For Reviewers
Archive Scope
Supplements Statistics
Most Read Articles
  Most Cited Articles
 
  
 
JSSM | Copyright 2001-2020 | All rights reserved. | LEGAL NOTICES | Publisher

It is forbidden the total or partial reproduction of this web site and the published materials, the treatment of its database, any kind of transition and for any means, either electronic, mechanic or other methods, without the previous written permission of the JSSM.

This work is licensed under a Creative Commons License Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.