Journal of Sports Science and Medicine
Journal of Sports Science and Medicine
ISSN: 1303 - 2968   
Ios-APP Journal of Sports Science and Medicine
Androit-APP Journal of Sports Science and Medicine
Views
4603
Download
2421
 
©Journal of Sports Science and Medicine (2021) 20, 431 - 437   DOI: https://doi.org/10.52082/jssm.2021.431

Research article
Low-Frequency Vibration Facilitates Post-Exercise Cardiovascular Autonomic Recovery
Kuo-Cheng Liu1*, Jong-Shyan Wang2,3,6*, Chien-Ya Hsu1, Chia-Hao Liu4, Carl PC Chen1,5, Shu-Chun Huang1,3,4,5, 
Author Information
* Equal contribution,
1 Department of Physical Medicine & Rehabilitation, Chang Gung Memorial Hospital, Linkou, Taiwan
2 Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital, Keelung, Taiwan
3 Healthy Aging Research Center, Chang Gung University, Taoyuan City, Taiwan
4 Department of Physical Medicine and Rehabilitation, New Taipei Municipal Tucheng Hospital, Chang Gung Memorial Hospital
5 College of Medicine, Chang Gung University, Kwei-Shan, Taoyuan County, Taiwan
6 Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan

Shu-Chun Huang
✉ MD, PhD Department of Physical Medicine and Rehabilitation, Chang Gung Memorial Hospital No.5, Fu-Hsing St., GueiShan District, Taoyuan City 333, Taiwan
Email: h0711@ms13.hinet.net
Publish Date
Received: 01-12-2020
Accepted: 15-05-2021
Published (online): 25-05-2021
 
 
ABSTRACT

It is important to use short breaks to accelerate post-exercise recovery in sports. Previous studies have revealed that vibration can reduce post-exercise muscle soreness. However, there is still high heterogeneity in the effects of vibration on cardiovascular autonomic activities, and most studies to date have focused on high-frequency vibration. This study aimed to investigate the effect of low-frequency lower-body vibration (LBV) on post-exercise changes in heart rate variability and peripheral arterial tone. Ten men and 9 women aged 20 to 25 were recruited for this study. Each subject visited the testing room three times with at least 2 days in between. Each time, the subject received one of the three different vibration frequencies (0, 5, and 15 Hz) in a random order in the sitting position for 10 minutes. LBV was performed immediately after a static standing (control) test and 3-min-step test. Heart rate variability and digital volume pulse wave were recorded during the vibration phase (V1: vibration 0-5 minutes; V2: 6-10 minutes) and the recovery phase (Rc1: recovery phase 11-15 minutes; Rc2: 16-20 minutes). The result of digital pulse wave analysis showed that the reflection index (RI) under 15 Hz decreased during V1. Heart rate of the 15-Hz group also decreased during Rc1 and Rc2. According to the analysis of heart rate variability, low-frequency power/high-frequency power (LF/HF) decreased and normalized high-frequency power (nHF) increased during V2, Rc1 and Rc2 under 15 Hz and, during Rc2 under 5 Hz vibration. This study confirmed that the application of low-frequency LBV after exercise can reduce peripheral vascular tone, accelerate heart rate recovery, decrease cardiac sympathetic nerve activity, and promote parasympathetic nerve activity. The effect was more pronounced at 15 Hz than at 5 Hz. The findings provide a method to accelerate cardiovascular autonomic recovery after exercise.

Key words: Vibration, pulse wave velocity, heart rate variability


           Key Points
  • High-frequency (> 20 Hz) vibration applied at rest or during exercise was confirmed to facilitate peripheral vasodilation. On the other hand, the effect of low frequency (< 20Hz) vibration on the autonomic cardiovascular system applied in the post-exercise period was scarcely investigated and remained unclear.
  • Application of low-frequency low-body vibration after exercise can reduce peripheral vascular tone, accelerate heart rate recovery, decrease cardiac sympathetic nerve activity, and promote parasympathetic nerve activity.
  • The effect of low-frequency LBV on post-exercise cardiovascular change was more pronounced at 15 Hz than at 5 Hz.
 
 
Home Issues About Authors
Contact Current Editorial board Authors instructions
Email alerts In Press Mission For Reviewers
Archive Scope
Supplements Statistics
Most Read Articles
  Most Cited Articles
 
  
 
JSSM | Copyright 2001-2024 | All rights reserved. | LEGAL NOTICES | Publisher

It is forbidden the total or partial reproduction of this web site and the published materials, the treatment of its database, any kind of transition and for any means, either electronic, mechanic or other methods, without the previous written permission of the JSSM.

This work is licensed under a Creative Commons License Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.